
// 

#7 Software System 
Manual 1 

SANYO Video Sales, Hamburg 

 
 
 
 
 
 
  



Wolfgang Radeloff  

 

R  

 

Home Computer  

 

Software System 
Manual  

 
SANYO Video Sales, Hamburg   



The publisher of this book does not guarantee that the described programmes and circuits, assemblies, 
procedures etc. are functional and free of the rights of third parties. The data shall not be considered as a pledged 
property in the legal sense and the possibility of errors shall be indicated. Any claims for damages, for whatever 
legal reason, are excluded, insofar as no intent or gross negligence occurs.  

 
Imprint:  

COPYRIGHT 1984 by SANYO Video Distribution, Hamburg 

Publishing support and sentence: Roland Löhr, Ahrensburg  
Design of book covers and graphic works: Cathrin Utescher, Hamburg Print and 

production: Kuncke Druck GmbH, Ahrensburg   



Introduction  

In 12 chapters and a comprehensive annexe, the book you are given here offers all 

the information that was missing from the BASIC manual of LASER computers.  

The system provides the user with a wealth of other services that can now be used 

with knowledge of the operating system. These include: Compute with 16 significant 

digits, ON ... GOTO and ON ... GOSUB, FRE(0) and finding variables in memory. 

Binary files can now be saved and started, the connection of peripherals via the USER 

port is documented.  

In addition, the book answers the questions that have been put to the author 

repeatedly on the phone by the users. Together with the BASICH manual, a better 

level of documentation and handling has already been achieved. Questions still 

outstanding can be dealt with in a following book.  

For guidance:  

Before working with this book, you should always consider the following three points:  

1. There are two software versions for the computer described here (LASER 

110/210/310 and VZ 200): LASER-BASIC verse. 1.1 and verse. 2.0. The grave 

difference is the composition of the image in the video RAM. Verse. 1.1 describes 

the RAM with normal characters while verse. 2.0 initializes the screen with inverted 

characters. The book always refers to verse 1.1.  

If you have the BASIC version 2.0 in your device, hold down the CTRL key while 

the monitor is on, and the screen will look like verse. 1.1 and all examples in the 

book will work properly.  

2. A lot of reference is made in this book to the BASIC-UP extension. If you own this 

cassette, you should know that 'BASICUP' only works with BASIC programmes 

created with 'BASIC-UP'.  

3. "EXTENDED BASIC", another BASIC TOOLKIT, complements 'BASIC-UP' with an 

extensive graphic instruction set. CIRCLE, REGT, PAINT, PLOT. TO... , GCLS and 

LPEN for the light handle are just a few examples.  

The book is structured in such a way that the individual chapters are closed in 

themselves and can be worked through without regard to the order.  

 
Hamburg, July 1984   



4  

 

Table of Contents  

 

1  Numbers, characters, variables. . . . . . . . . . . . . . . . . . . . . . 7 

digit and character formats,  

Types of variables  
LET, DEFINT, DEFSGN, DEFDBL  

2  Fields, organised storage  ................................................ 13 

field variables: Tables and files lists  

DIM  

3  65536 memory is managed. . . . . . . . . . . . . . . . . 19 EPROM 

User Programmes  

Operating System Pointers  

With NEW Deleted Programmes Recover Free 

Bytes  

CLEAR, NEW, FRE (0), FRE (""), MEM, VARPTR  

4  PEEK and POKE and the integer format  ......................... 27 

Convert natural integer numbers  

in signed integer numbers  

5  Comments on PRINT and LPRINT  .................................... 29 

PRINT, ";", ",", PRINT AT, PRINT USING, LPRINT  

6  Helping the programmer  ...................................................... 38 

Editing, Listing, Deleting, Fault Search,  

Structured programmes  

7  Text Graphics, Function, and Application  ...................... 44  

 2000 characters resolution, quarter 

graphics A quarter learns to walk  

8  More graphics and sound  ................................................. 53 

The character "", INVERS, Cursor control,  

COLOUR with the LASER 110,  
FASHION and background colour, BUZZER on-off  

9  Peripheral control with INP and OUT .........・. 57 user port: 

Control with INP and OUT  

Circuits and Examples in BASIC  
The 64KB RAM expansion   



5  

 
 10 Programming of joysticks  ........................................................ 65  

With INP (X) and ON ... GOTO  

 11 Machine-related programming  ................................................ 69  

Creating Programmes  

Memory Deployment  

Protection against BASIC  

CSAVE, CLOAD and CRUN for ML programmes  
 

12 For the assembler programmer  ................................................... 78  

Keyboard Query, CRUN/CLOAD  

Character to screen, string output,  

Compare symbol, test next character,  

Compare DE/HL Test Variables Type, Control Codes, 

Joysticks, BUZZER, BEEP,  
printer control  

Attachments  ......................................................................................... 86   



6  

 
List of Annexes  

1  LASER I/O circuit statement  

2  LASER 110/210 schematic (5 diagrams)  

3  Plug Occupancy System-Bus, Peripheral-Bus  

4  LASER 210 Extension 6 KB, Circuit  

5  Printer Interface, Circuit  

6  Joystick, Circuit  

7  LASER cassette recorder, circuit  

8  LASER 110 Upgrade to Colour Computer  

9  Variable formats  

10 Memory mapping  

11 Pointers in the operating 

system 12 List of system 

variables  

13 Advanced ASC II Code, Screen Code  

14 Geometric Functions with LASER-BASIC 15 

Short notation  

16 BASIC text format  

17 BASIC Tokens  

18 Tape Loading Format  

19 Comparison of BASIC dialects  

 
・  

-4  

 

 

  



7  

 

1 numbers, characters, variable  
 

Number and character formats 

Variable types  

LET,DEFINT,DEFSNG,DEFDBL  

Your LASER computer will process numbers that are not writable 

in the normal way. The number range is, expressed in terms of 

tens, greater than 119-39 and less than 1139, In the computer 

such numbers are entered in the form: 1 E38 or 1 E-38. The 

number 1812 is written in this technical-scientific representation as 

1.812E3. Of course, the computer also understands normal 

spelling. If, however, it is intended to print a number equal to or 

greater than 9999999.5, it will normally switch to the technical-

scientific format (1.2). If the number is less than 0.0099, the 

technical-scientific format shall also be changed.  

 

? 2.33 E 3 <RETURN> 2330  
 

1. 1  

 

? 3470828 <RETURN> 3.47083 E+06  
1. 2  

 

Single Precision  

This output is made up of six digits and the remaining digits are 

rounded (1.3).  

This type of number representation is called a Floating Point 

(Single Precision). After power-up, the computer is in this type of 

presentation. All calculations must pay particular attention to the 

rounding error!  

If the rounding error is not acceptable and a greater accuracy of 

the calculation result becomes necessary, then 'Double Precision' 

can be changed. The numbers are defined for input or in the 

programme in technical science, but the 'E' is defined by a 'D'   



8  

(1.4). The number representation is now 16 significant (valid) 

digits, and the rounding error is negligible for most applications.  

 

7 0.1234567 <RETURN> . 123457  
1.3.  

 

2 1/6 D 0.16666666666666667  
1.4  

 

VARIABLE TYPE TABLE  
—  —  
 

 30977  ....... A  
 30978  ....... B  

 
 31001  ....... Y  
 31002  ....... or  

1. 5  

 

variable storage  

So far, we have directly regarded the number representation as 

'constants'. The programme stores numbers in memory. There, 

they can be modified and manipulated in the programme run. 

These stored numbers are called 'variable'. Such numeric 

stores, called numeric variables, are always created by the 

programme for single precision numbers without special 

precautions. In order to store numbers in the format of double 

accuracy, an intervention in the variable handling of the BASIC 

interpreter is necessary: From address 30977 the interpreter 

has created a table of 26 bytes in length. Each table position 

corresponds to a letter of the alphabet ( 1.5). By entering key 

numbers (1.6) using the POKE statement  

 

FLAG VARIABLE TYPE 

2 = INTEGER NUMBERS 

3 = CHARACTERS  
4 = SINGLE PRECISION 
8 = DOUBLE PRECISION  

1.6.   



9  

can be explained (declared) in groups for a corresponding variable 

type.  

The string variable and the length variable can now be addressed 

in the programme by omitting the type identifier. Expressions such 

as Y = 12 instead of Y% = 12 or A="STRING" instead of AS = 

"CHAIN OF CHARACTER" are then possible.  

However, designators remain the priority. If the group of variables 

B is defined for adding numbers, the string store BA'/ will still be 

created primarily for recording strings.  

 

10 POKE 30978,8  
20BZ = 1 /6D  
30 PRINT BZ  
RUN .166666666666
66667  

1. 7  
 

Double precision variable  

For example, POKE 30978,8 sets up all the variables that start in 

the name with 'B' to record numbers in 'Double Precision' format. 

These are names like B, B9, BZ, B(5) or BILD.  

Note, however, that assignments to a double-precision variable in 

the technical-scientific format must be made with the 'D' as an 

exponent identifier (1.7) ! If in the example (1.7) the D (D0) is 

omitted, the wrong result is 1/6 = .166666716337204.  

However, double-precision operations in the programme should 

only be performed where the increased accuracy of the result is 

required. The example ( 1.8) needs approx. 100 multiplications of 

double accuracy.  

 

10 POKE 30979,8: 'DBL 
20 C1 = 1. 5D  
30 FOR I=1 TO 100 
40 c2 = C1 + 1,234 
50 NEXT  
60 PRINT C2  

+k 12 SECONDS ++k  
1. 8   



10  
 

10 C1 = 1. 5  
20 FOR I=1 T0 100 
30 C2 = C1 1 234 40 
NEXT  
50 PRINT C2  

kk+ 2 SECONDS  
1.9.  

 

12 seconds, but with Single Precision only 2 seconds ( 1.9). In 

addition to the longer run time, the increased memory space must 

be taken into account for a variable of double accuracy as a 

disadvantage ( 1.10).  

 
INTEGER  
SINGLE PREC:  
DOUBLE PREC:  
STRING  

 
AX= 12  

5 BYTES 7 
BYTES 11 

BYTES  
6 +LONG) BYTES  

1 1  

 
1.11  

 
integer variable  

A third variable format allows only integer numbers in the range of -

32768 to +32767. Small memory requirements and fast processing 

are the advantage of targeted application of these 'integer 

variables'. Such variables can be set up by means of tables (1.5) 

and (1.6) or by identifying the name of the variable with a trailing % 

(1.11).  

Changing the Format  

Variables can be changed from one format to another. However, 

restrictions must be observed:  

* Integer Float: Cut the decimal places. There is no 

rounding. Example:  
A% = A (1.12).  

Single Precision to Double Precision: A previously 

encountered rounding error will not be reversed. Example: 

POKE 30978,8: B = A.   



11  

Double Precision to Single Precision: It is rounded. Example: 

POKE 30978,8 A = B.  

A floating-point format conversion to Integer is also possible 

with the expression A = INT(B).  

 

10 A = 12.25 20 

AZ = A  
30 PRINT A 

RUN  
12  

1.12  
 

BASIC UP  

The BASIC extension 'BASIC UP' eliminates the configuration of 

the variable type via the table in the system RAM. Instead, the 

instructions are:  

DEFINT 
[IDEFSN
G 
DEFDBL  

for the initialisation part of the programme.  
A list of variable start characters should be attached. Any variables 

that are the first to list these characters in the name are thus 

initialised for the corresponding type (1.13). The integer variables 

with % in the programme text may not be labelled if a 

corresponding agreement has been reached via the table or BASIC 

UP.  
 

NEW INSTRUCTIONS 

IDEFINE A,W,Z 

IDEFSNG B,C,M 

DEFDBL D,E,M-P  
1 13  

 

String Strings  

The fourth variable type: The string or 'STRING'. This type of 

variable can be used to assign strings (digits, letters, characters, 

and graphic characters), displayed inverse or normal, to their 

storage codes. A '$' character (dollar) is assigned to these 

variables to identify in the name. These string variables can also be 

pre-defined via the table, your key number is '3'. See the character 

codes in Appendix 13.   



12  
 

AS = "TEST"  
 

1 84 1 69 1 83 1 84 1  

STORAGE  
 

1. 14  

 
BOOL's variable  

This type of variable is the last one mentioned. It records the 

result of a comparison or a combination of two or more 

variables. It's also called the Truth Variable.  

This type of variable is usually expressed as I F ... and with the 

instructions according to TH EN ... and ELSE... immediately. 

For special applications, it can be assigned to a numeric 

variable ( Integer) and evaluated in later IF ...THEN statements.  

 

BOOL*SCHE VARIABLE  
 
TRUE 
WRONG:  

-1 BZ. # 0 0  
 
1.45  

 
10 A=11: B=12: C=12: D=13 
20 X= B=C: Y= A>B: Z= A<D 
30 PRINT X;Y;Z  
RUN  
-1 0 -1  

1 16  

 

Example 1.17: A variable is tested to zero. The programme 

branches when A is nonzero.  

Example 1.18: The programme branches when A is 0.  
 

 

IF ATHENS G0T0 500  

 
IF NOTA THEN GOTO 500  

1, 

l  

 
1.18   



13  

2 fields: Organised Storage  

 

Field variable: Lists, tables and files DIM  

All types of variables mentioned in chapter 1 can be organised into 

memory fields. The array gets a name (2.1 ). The individual space 

within the field is indicated by an index in brackets (2.2). This index 

can be a constant, a numeric variable, or a numeric expression 

(2.3).  

The advantage of this organisation: Memory slots are no longer 

addressed by directly naming their names, but by computer-

controlled operations. Example 2.4 prints the contents of 10 

variables to the screen.  

 

Field variable: Name  
=================  

 

AB, D$, E1%  
2.1.  

 

Index field variable  
======================  

 

AB5), D$@), E1%12)  
2  

 

Field variable with index constant, 
variable, expression  

 

%— 
 

AB(5), D$(J), E1%(INT(J/3))  
3  

 

10 FOR 1=1 TO 10 20 

PRINT ABI  
30 NEXT I  

2.4.  
 

If a value is assigned to an indexed variable with LET in a 

programme, the LASER will automatically create an 11-space 

memory field and place the value assigned with LET in the 

corresponding space (2.5). On the one hand, for fields with less 

than 11 memory slots, this means non-economic storage 

management (some seats are not occupied), and on the other 

hand, the BASIC   



14  

 

10 LET ABS)=12.5 
RUN  
AB(0) = 0 
AB(1) =  

AB5) = 12.5 

(AB10) = 0  

2 <  

 

Interpreters for fields with more than 11 seats will be assigned 

an allocation agreement, so for the sake of clarity of the 

programme, the automatic installation for small fields should be 

waived.  

Instead, the BASIC keyword DIM (DIMensioniere) is used to 

define the storage organisation in its size for each field. The 

statement (2.7) creates 16 slots under the variable name AB, 

starting with AB(O) to AB(15) and ending at zero.  

Multiple fields can be initialised with a statement. Named fields 

are defined by their dimensioning in a list, separated by commas, 

according to the word DIM (2.8). The D IM statement must 

always precede assigning values to field variables in the 

programme. So it belongs in the initialisation part of the 

programme. A field can only be defined once in the course of 

the programme using DIM. An attempt to size a field under the 

same name with a different extension is prevented by an error 

message and a stop of the programme run. (2.9).  

 

DIMensioners  
2.6.  

 
10 DIM AB15)  

2.7.  

 

10 DIM AB(15),D$(5),E1%(20) 2.8   



15  

 

10 DIM A$) 
2 DIM A$5) 
RUN  
? REDIM'D ARRAY ERROR IN 20  

2 9  

 

An additional error message from the operating system is 

reported whenever a field variable with an index outside the 

dimensioned range is accessed (2.10).  

 
10 DIM A(5)  
20 PRINT A12) 
RUN  
? BAD SUBSCRIPT ERROR IN 20  

2. 10  

 
Tables and files  

So far only fields in the form of a list have been considered (2.5). 

The LASER allows for two further organisational forms: These 

are fields in table form that allow the variables to be arranged by 

row and column, and fields in the form of a file in which each 

card is once again created in table form.  

The field in table form, also called 'two-dimensional field' or 

'matrix', is addressed by the field name with two indexes. The 

first one will name the row of the table, the second one will 

name the column (2.11 and 2.12). Accordingly, the organisation 

requires three index numbers to be entered in files: Column and 

row of table and number of card. The storage organisation 

extends here in three dimensions (2.13, 2.14).  

 

0.0  0.1  0.2  1.3  
1 , (1)  1 , 1  1, 2  1.3  
2.0  2.1  2.2  2.3  
3.0  3.1  3.2  3.3   



16  
 

1 DIM E1 3,3) 20 

E112)=12  
30 PRINT E11,2) 

RUN  
12  

2 12  
 

10 IN Z3,3,3) 20 
2%1,0,10=12  
30 PRINT Z%1,0,1) 

RUN  
12  

2. 13  

 

,13 0,2,3 0,3,3 2 
0,2,2 0,3, ,3 -
++++1,2 , 

0,1,0 0,2,0 0,3,0 1,2,3  
 1.1.0  ,1,2 , 1  

 

2.14  
 

Limits only by available memory space  

A very high number of elements can be programmed per field, 

which is limited by the available storage space on the one hand, but 

on the other hand the LASERBASIC allows only a certain extent of 

fields. The limit for the corresponding types of variables is given in 

Table 2.15. They were determined for the LASER 110. The values 

in this table only describe the maximum allowable dimensioning in 

the D IM statement, an error message will occur earlier depending 

on the storage size.  

DIM dimensions everything!!  

The D IM statement not only allows the creation of fields of the type 

described, but also creates the entire variable table by naming the 

variable name according to D IM. (See also Chapter 3 and Annexe 

9.) This makes it possible to create a table of variables in the 

initialisation part of the programme and thus influence the 

processing speed of the interpreter.  

DIM A, Z%, ClS, F(5)   

o
r 



17 

This statement sets the variables A and Z% as the first and 

second with the value zero in the table of variables, the third 

with the string variable C1$, and then dimensions the field F 

with 6 elements. 

6 

ARBE IT O 
NR 

1 
2 
3 

4 

5 
6 
7 

8 

9 
10 

0 
POINTS 

1 
NOTES 

2,16 

10 'INITIALISATION AND MENUE 20 
CLEAR 1000: DIM NO$10.1.6) 40 
RESTORS: CLS 
50 FOR I= TO 6: READ N0$(0,0,I),N0$(0,1,I) 
60: PRINT I-:-1;"=";N0$(0,0,I),NO$C0,1,I) 
70 NEXT: PRINT 
100 PRINT"WHICH TRAY";: INPUT K 
110 IF K<1 OR K>7 THEN PRINT CHR$27);CHR$(27): G0T0100 115 
K=K-1 
120 PRINT 
121 PRINT" 1 = INPUT" 
122 PRINT" 2 = OUTPUT" 
129 PRINT" YOUR CHOICE";: INPUT L 

 

 
 
 
 
 
 
 
  

Table 2.15  Limit  of field elements    

  INTEGER  SNG.PREC.  DBL.PREC. STR ING 

LIST  17000  8509  4250  11347  

TABLE  129129  9191  664  105105  

CARTEI  232323  19+19%19  151515  212121  

,'[ HISTORY [FR HISTOR]  

, 1  1      

I eNGL 1 FR MOUSE   -  
,-  

GERMAN  MR GOETHE -     
} 

87  1  -     —35  3  -   
    -    - -      —

    - -
    - -
    -   
      
        



18  

130 IF L<1 OR L>2 THEN PRINT CHR$(27);CHR$(27): GOT0129 
140 IF L=1 THEN 300  
1 4 1 I F L = 2 TH E N 60 0  
300' ENTER  
310 CLS: PRINT N0$(0,0,K),N0$(0,1,K): PRINT 
320 PRINT" WORK NO. "  
330 PRINT’ POINTS "  
340 PRINT" NOTE  
350 PRINT@85,’; INPUT I 
355 IF I>1O THEN 350  
360 PR 1NTa117,’’; 
INPUTP$ 370 PR 1NT6149,"";: 
INPUT NS  
380 NOS(I,OK)=PS: NOS(I,1,K)=NS  
390 PRINT: PRINT"MENUE YES/NO)". INPUTK$ 400 
IF LEFT$(K$,1)="N" THEN 300 ELSE 40  
600 'OUTPUT  
610 CLS: MP=O: MN=O: Z=O  
620 FOR I=0 TO 10: PRINT NO$(I,0,K),NO$(I,1,K): GOSUB 900: NEXT 
630 Z=Z-1: IF Z=O THEN 800 ELSE PRINT MP/Z,MN/Z: GOT0800  
800 'RETURN TO MENUE  
810 PRINT" MENUE YES/NO) ",. INPUT 
K$ 820 IF LEFT$(K$,1)="J" THEN 40 ELSE 
END  

FORM 900 'AVERAGE VALUES  
910 IF NOS1,O,K)>"" AND NO$I,1K)" THEN Z=2+1 920 
MP=MP+VAL(NO$I,O,K): MN=MNVAL(NO$1,1,K))  
990 RETURN  
1000 DATA ENGLISH,MR GOETHE,ENGLISH,FR MOUSE 
1020 DATA FRANZOES,FRL PARIS,BIOLOGY,MR BAUM 
1040 DATA PHYSICS,MR OHM,MATHE,MR A RIESE 1060 
DATA HISTORY,FR HISTOR  

2/17  

 

The programme 2.17 uses a three-dimensional field { file) {2.16 for 

placing 10 censorship in 7 compartments. Take special care with 

the handling of the field:  

Row 20 dimensions the field.  

Row 50 reads the heading to row 0 of each table.  

Row 310 gives the heading of the selected table. Row 380 

reads values to a defined row.  

Row 620 gives the contents of a table.  

Row 910 checks if a line is described.  

Row 920 adds the contents of a row.   



19  

3,65536 Memory Manages  
 

EPROM user programmes, pointers in the operating system;  
Recover programmes deleted with NEW; Free Bytes  

CLEAR, NEW, FRE (0), FRE ("), MEM, VARPTR  

The LASER computers (110, 210, 310, VZ 200) are organised as 

Z-80 systems. Appendix 10a gives an overview of the physical 

memory distribution I ung of the computer. Appendix 1 Oe 

supplements it with the location of the memory extensions. These 

memory slots are managed by the operating system and the 

BASIC interpreter, which itself occupy 16 KB memory space (RÖM 

1, ROM 2).  

 

  NAME GAME            
STACK  EQU 7FFFH            
CRTDGE  EQU 4000H            
  ORG 787DH            

INTVTR  DEFS 3  ;INTERRUPT EXIT LOC    

  ORG CRTDGE            

  DEFB 0AAH  ; 1ST PATTERN        
  DEFB 055H  ;2ND  PATTERN        
  DEFB 0E7H  ;3RD  PATTERN        
  DEFB 018H  ;4TH  PATTERN        
START  LD SP,STACK  ; RE-INITIAL IZE  STACK    
  LD A,0C3H  ;JP 0BJ CODE        
  LD (INTVTR) ,A            
  LD HL, INTSVC  ; GET SERVICE  ROUTINE  ADDR  

  LD ( INTVTR-:-1) ,HL   ;MOD IFY EX IT LOC  

 
 

INTSVC  CALL KEYBRD 

  POP  HL  

  POP  HL  
  POP  EN  
  POP  BC  
  POP  AF  
  EI    
  RETI   

;USERS THIRD INT SERVICE ROUTINE  

 
;CLEAR 
STACK ;RECOVER HL 
REG ;RECOVER DE 
REG ;RECOVER BC 
REG :RECOVER AF 
REG ;ENABLE 
INTERRUPT  

3 1   



20 

EPROM programmes  

After power-up, the operating system will check if the bit patterns 

AAH, 55H, E7H and 18H are present from the addresses 4000H, 

6000H or 8000H. If they are detected in one of these areas, the 

operating system passes control to the user programme beginning 

after these four bit patterns. Programme 3.1 is an example of how 

to integrate your own programmes.  

Pointer in the operating system  

The BASIC interpreter manages its RAM range (7AE9H to FFFFH) 

via a number of 'pointers', which are created together with other 

system variables after switching on in the RAM range (7800H to 7 

A E8H). See Annexe 11.  

Pointers are two-byte wide registers in which the BASIC interpreter 

remembers the addresses of the data and programme text areas it 

needs to manage.  

For the BASIC programmer, the hands HP (start of the BASIC text) 

and TOM (pointer to the last RAM cell) are of particular interest. A 

conversion of these pointers creates storage space protected 

against BASIC to store machine programmes. The Z-80 BASIC 

versions are usually protected by the TOM (Top Of Memory) 

pointer. See also chapter 15!  

CLEAR  

The CLEAR statement deletes all variables and dimensioned fields. 

The reservation will be cancelled. CLEAR is without parameters. 

Bookings for strings are not affected.  
 

10 CLEAR 1000  
3.2  

 

PRINT PEEK (30898)  
3.3.  

Appendix 11 shows the memory area for storing strings and the 

corresponding pointer STSP ,String Space). After the computer is 

turned on, 50 bytes are reserved for string storage. With the 

CLEAR statement   



21  

and the corresponding parameter, the BASIC programmer can set 

up this string area for the needs of his programme (3.2).  

If the programme should run in all possible combinations of LASER 

computers and memory extensions and if maximum space is 

required for the filing of strings, then the pointer TOM offers itself 

as a measure of the size of the string storage area to be 

dimensioned with CLEAR.  

The pointer's MSB (Most Significant Byte) contains the page 

number of the highest RAM cell detected in the memory test. The 

statement (3.3) should be used to determine the number of pages 

that apply to the system (3.4).  

If the programme should universally size its string memory area 

itself, the programme line (3.5) can be used. The constants 

mentioned in the constants are intended to specify the storage 

requirements for the device combination with the lowest RAM 

range.  
 

78B2H  30898  (MSB - TOM)  

 
READ 110  7FH  127 

Vz 200  7FH  127 
LASER 210  8FH  143 
L 110 + 16KB BFH  191 
VZ200+ 16KB  BFH  191 
L210 + 16KB  CFH  207 
LASER 310  B7H  183 
LASER310  + 16KB    
 
 

64KB  
FFH 255 
FFH 255  

 

3 4  
 

20 CLEAR 1000+(PEEK30898)-127)+256 3.5  
 

NEW  

It is easy to see what the NEW statement does, using the graphic 

in Annexe 11: It resets all pointers to the value after the computer 

is turned on. The programme is still present, but the BASIC 

interpreter has 'forgotten' it.   



TO NEW:  

22  

An accidentally deleted programme can be remembered by 

some POKE instructions to the interpreter. Only the knowledge 

of how the text tray is organised and managed is necessary. 

Annexe 16 shows this in graphic form.  

Each instruction line starts with a 0 byte. This is followed by a 

two-byte-wide pointer to the beginning of the next line. The line 

number is then stored in two bytes, followed by the BASIC text 

of the line. All keywords are encoded into a byte that gets > 127 

and entered into memory. These encoded bytes are also called 

'tokens'. All other characters are stored with their ASC II code, 

which is always smaller than 128.  

See Appendix 17 for a table of keywords and their code 

numbers. Annexe 13 shows the ASCII code. After the first 

statement line, a '0' byte follows the beginning of the second line. 

The end of the BASIC text is marked by setting the two bytes 

the pointer of the last line points to 0. A BASIC programme text 

is thus always completed in memory with a sequence of three 

times '0'.  

If there is no programme in memory, i.e. after NEW, the '0' in 

cell 74E8H (marking first line) will follow 'O' twice more (3.6). The 

pointer TP (end BASIC text/ beginning variable table) points to 

NEW to the first byte after the three null bytes.  

To restore a deleted programme, just point the pointer in the 

BASIC text to the second line and point TP to the first byte after 

the three zero bytes at the end of the earlier BASIC text. In the 

following, the  

 

0  
 

0
  

 

0  
 

31464 31465 31466  
 

3.6.  
 

10 A=12  
20 PRINTA   

3.7.   

1 



23  

short programme 3.7. The programme should be entered, and then 

the statement (3.8) should make visible the BASIC code generated 

in the memory. It shall correspond to the code set out in Annexe 16. 

Especially the values of the pointers are to be observed. The 

pointer of the first line in the text points to the first byte of the 

pointer of the second line. All the lines of the BASIC programme 

are linked together, and the interpreter is 'brimming' through the 

text using these pointers to process the programme. The TP 

pointer points to the first byte after the end of the text.  
 

FOR 1=0T018:2PEEK31464+I ; :NEXT 3 8  
 

Restore programme deleted with NEW  

The programme (3.7) will now be deleted with 'NEW'. From the 

structure of the BASIC text can be inferred to the approximate 

position of the pointer of the second line. With PEEK instructions 

from the keyboard, his address is now accurately determined. If the 

'0' marking the beginning of the second row is found, it is clear that 

the deleted pointer of the first row must point to cell 31474 (3.9). 

The address thus determined must now be decomposed into the 

lower and higher value part {3.10). The two decimal numbers thus 

obtained are then entered into the two cells of the pointer using the 

POKEA statement (3.11). This restores the pointer that was 

deleted by NEW.  

 

2PEEK (31472) 
50  
2PEEK (31473) 
0  

3 9  
 

? INT (31474/256) 
122  
2 31474-(122256) 
242  

3 10  
 

POKE 31465,242 

POKE 31466, 

122  
3.11   



24  
 

The next step is to restore the TP pointer to the text end. Here, too, 

the presumed location of the text end in memory must be 

determined using PEEK instructions. In no case should any loops 

be formulated to search the memory, since the associated 

installation of variable stores would further destroy the BASIC text. 

If the text end (three times '0') is found, the pointer can be restored 

at address 30969, 30970. The process is the same as in (3.10, 

3.11). Note that the PEEK statement as an argument from address 

32760 must have negative integer numbers. A conversion utility 

shows (4.7).  

Free Bytes  

The LASER-BASIC does not know the FRE (0) statement to 

calculate the still free RAM space. However, this information should 

be derived from the values of the pointers that manage the RAM 

area. Appendix 11 shows that the difference between the FSL and 

STSP hands is similar to the free range of RAMB. The short 

programme (3.12), appended or included in the programme in 

progress, will output the number of bytes remaining free after the 

call. The stack area at run time of the programme is not recorded.  

The free space calculation routine is present in the BASIC 

interpreter, only the corresponding keyword is not recognised and 

leads to the output of a '0', since FRE is interpreted as a variable 

name (3.13).  
 

100 ST=PEEK(30881) 256+PEEK30880) 
110 FS=PEEK30974)256+PEEK(30973) 
120 PRINT "EREE=";ST-FS  

3 12  
 

 

 

FRE (0)  
 
3,13  
 

500 PRINTPRINT(0)  

 
POKE 31470,218  

 

3 14  

 

3-15   



LIST  
500 PRINT 

READY  

 
RUN 

12660 

READY  

25 

FRE (0)  

However, you can enable the feature in the following ways:  

Enter a dummy line as the first line of the programme (3.14). 

Annexe 16 shows the structure of the first line. The two PRINT 

statements will appear as tokens with the code number 178 in the 

two RAM cells 31469 and 31470. If the token in 31470 is replaced 

by the token for FR E, the BASIC interpreter will read the line as 

PRINT FRE (0) and execute it correctly.  

The token (encrypted command byte in memory) for FRE is 218. 

The statement (3.15) replaces the token 'PRINT' with that of 'FRE'. 

The line will not be listed correctly after this manipulation, but will 

be executed (3.16, 3.17). The user programme can now be written. 

All editing functions will include line 500. Other rows can be 

arranged before and after this row.  

The F RE (0) notation of the function returns the free space 

between the FSL and STSP pointers. The value depends on the 

size of the programme text, the number and type of the variables, 

and the string area reserved with CLEAR.  

 
3 17  

 

The Trash Collector  

The FR E ("") spelling determines the space available for strings, 

revises the string area, and removes unnecessary strings. The 

function included in the programme creates more space during the 

running time of the programme (3.18).   



26  

 

500 PRINTPRINT(") 

POKE 31470,218  

100 CLEAR 1000  

LIST  

100 CLEAR 1000 
500 PRINT  
READY  

RUN  

1000  
READY  

< 18  

 

3FRE (@) ♫ 
FRE ("") 

MEM  
3 19  

 

 
VARPTR (A$)  

MEM  

The statement MEM without parameters returns the free space like 

FRE (0).  

BASIC UP  

The BASIC extension BASIC-UP allows the previously described 

instructions to be included in the programme. However, before 

each statement, the character [SHIrijYY] must be given (3.19).  

Another feature that uses the RAM management pointer is the 

VARPTR function. In the form (3.21), it provides the address of the 

variables named as arguments, see also Annexe 9.  

VARPTR  

Here too, the token 192 for VARPTR can be used without 

BASICUP. The statement can be implemented using the procedure 

shown in (3.14-3.18).  

The statement (3.22) turns off BASIC-UP. R AM management 

pointers are re-initialised.  

3 20 1  
 



 

[ INTB PR VARPTR CA$)   
3.21  

27  
 

1!iJSYSTEM   

3,22  

 

4 PEEK and POKE and the integer format  

 

Convert natural integer numbers to signed integer numbers  

The instructions PEEK (AD) and POKE AD,VALUE require the 

address specification in integer format. Chapter 1 briefly describes 

this format: It represents numbers without a decimal fraction that 

are encoded in two bytes in memory.  

With two bytes, corresponding to 16 digits binary, numbers can be 

represented in the range of O to 65535. In this format, numbers are 

processed internally by the operating system.  

The integer format of the BASIC interpreter is divided into negative 

and positive numbers to support arithmetic (4.1 ). The sign is the 

highest value bit 15 (4.2). With the bits O to 14, numbers from O to 

32767 can be displayed. Negative numbers are encoded with set 

bit 15. They are presented as two-way complement.  

From the point of view of the programmer, who wants to read or 

change the memory cells with the instructions PEEK and POKE, 

and who therefore needs a number range of O to 65535, negative 

numbers are not much to start with.  

The numbers O to 32767 (7FFFH) are internally converted into 16 

bits  

 

INTEGER NUMBERS FORMAT:  
===============-
================================================================
==============-===============-================================-
========================================================-  
-32768 - 0 - +32767  

1  

 

BIT15: SIGN: 0 POS IT 

IV  

1: NEGATIVE  
2   



28  

are shown normally and can be used as an address specification 

(4.3). The next higher number 32768 (8000H) is retained with its 

value, but the set bit 15 gives a negative sign to avoid the 

otherwise not very useful value -0.  

The following number 32769 (8001 H) is converted as follows: 

From bits 0 to 14, the two complement is formed via the one 

complement, bit 15 becomes the character  
negative'. Bit 0 to 14 represent the value 32767, with bit 15 then -

32767 (4.5).  

Based on these findings, natural numbers, hexadecimal numbers 

and the numerals of the arithmetic integer format can be compared 

in (4.6). Programme (4.7) is used to convert natural numbers into 

integer format.  

 

BINARY FIGURES:  
=======—=  

 

0 0000 0000 0000 0000 
32767 0111 111 111 111 
1111  

or  

 

32768 1000 0000 0000 0000 4.4  
 

32769 (BIT 0-14) 000 0000 0000 0001 
1ER COMPLEMENT 111 1111 111 110 2ER 
COMPLEMENT +1  

 

    111,111 1111 1111    
VALUE    32767        
SIGN    1        
NUMBER    -32767        
      4.5.      
0000  0   0      
0001  1   1      
7FFF  32767  32767    
8000  -32768  32768    
8001  -32767  32769    
FFFE  -2   65534    
FFFF  -1   65535    
HEXADEZIMAL INTEGER  NATi, 

IRELAND  
PAY 

      4.6.       



29  

 

10 K=32768 
20 INPUT A  
30 IF A<K PRINT A: GOTO 20 
40 A=A-K  
50 A=(NOT A) +1 
60 A=A+K  
70 PRINT -A: G0TO 20  

4.7.  

 
5 Comments on PRINT and LPRINT  

 
PRINT, ";", ",", PRINT AT, PRINT USING, LPRINT  

The output to screen and printer follows certain rules. These 

functions are discussed in more detail below. The following table:  
1. PRINT  
2. THE SEMIKOLON ','  
3. THE COMMA ',' AND TAB (X)  
4. PRINT AT '@'  
5. PRINT USING  
6. LPRINT  

 

PRINT 12  
12  

PRINT "HI" HI  

A=: B=5  
PRINT A  

3  

PRINT 3+5 8  

PRINT SQR(8)  
2,82843  

AS="HELLO" 
PRINT 
A$ HELLO  

PRINT LEFT$(A$,3) 
HAL  

5.1.4   



30 

5.1 PRINT  

The PRINT statement prints data (numeric or character strings) to the 

screen. After PRINT, a function or expression can be called, the result 

of which is then output to the screen (5.1.1).  

In the examples that follow, the character '_' (the underline) is used for 

a space (SPACE). The first important point: The output to the screen is 

always completed by the operating system with carriage return and 

line feed functions. These control commands, taken from typewriter 

technology, cause the next PRINT statement to output data at the 

beginning of the following free line.  

The 'Line Feeder' statement can also be used in coded form by the 

BASIC programmer. It corresponds to the function 'CURSOR DOWN'[' 

(5.1.2). The example (5.1.3) shares both statements, "Line Feeder" 

and "Waggon Return".  

 

ROW ADVANCE: CODE 10  
—  —  
 

INSTRUCTION: PRINT CHR$10); 
EXAMPLE: 
3"111";CHR$10);"222"  
111  

222  
5. 1. 2  

 

CAR RETURN AND ROW 
ADVANCE: CODE 13  

INSTRUCTION: PRINT CHR$13); 
EXAMPLE: 
3111";CHR$13);"222"  
111  
222  

5. 1.3.  

 

A second important point concerns the issue of numerical data (5.1.4). 

The following rules apply:  

A positive sign is replaced by a space.   



31  

For numbers less than zero, the value of zero 

before decimal is suppressed.  

These limitations can be circumvented either by short conversion 

routines or by the PRINT USING statement. The programme (5.1.5) 

supplements the positive sign and adds the leading zero for 

numbers <0. As a subprogramme, the output of numeric values 

can be done with this programme.  

 

10 PRINT 0  
20 PRINT -12 
30 PRINT 12  
40 PRINT 0.37 
50 PRINT -0.37 
RUN  
0-12 
12.3
7 - 
0.37  

5.1.4.  

 

10 INPUT A: AS=STRSA)+" " 
20 IF A=O THEN 90  
30 X=ASC(AS): AS=RIGHT$A$,LEN(A$)-1):  

Y=ASC(A$)  
40 IF X=32 THEN X=43  
50 IF Y=6 THEN AS=CHR$X) +"@"+4$ ELSE AS=CHR$X) +A$  
90 PRINT A$: PRINT: GOTO 10  

5.1. 5  
 

5.2 The semicolon ';'  

This character in a PRINT statement suppresses the CR (carriage 

return) and LF (line feed) control sequences at the end of the 

output. The next PRINT output will be in the same line immediately 

after the previous one. (5.2.1) shows that after a numeric value is 

output, a space is inserted automatically, while strings ・without 

spaces are lined up.  

Within a PRINT statement, functions, constants, variable names, 

and expressions can take the form of a list   



32  

in succession. Separation, if necessary, is done for output within 

one line by the semicolon (5.2.2, 5.2.3).  

 

10 PRINT 2;  
20 PRINT "HELLO"; "X" 

RUN  
2 HALLOX  

5. 2.1.  
 

PRINT 12;-.13 12 -.13  
5.2.2.  

 

A$="HELLO"  
PRINT AS$" LASER" 

HELLO LASER  
5.2.3.  

 

PRINT 1,2,3,4  
 1  2  
 3  4  

5.3.1.  

 
5.3 The comma',' and TAB (X)  

The comma and the TAB (X) function take over tabulator tasks in 

PRINTAannotation. The comma directs output to the screen to one 

of two pre-tabulated positions on a screen line. In a row with 

columns 0 to 31, these are digits 0 and 16 (5.3.1).  

The TAB (X) function generates a tab position within an output line 

of 64 characters (two screen lines). The argument X of TAB (X) 

must be in the range of 0 to 255. TAB (100) tabulates in heading 

100-64 equal to 36 (5.3.2), while TAB (200) tabulates in column 

200-(364) equal to 8. Example (5.3.3) shows the application of this 

function to right-justified string output.  

 
21A100);‘X’ —0-
31—  
—x  

5.3.2.   



33  
 

10 AS$="HAMBURG"  
20 FOR I=1 TO LEN(AS)  
30 PRINT TAB15-DI; LEFTS(AS,I)  
40 NEXT  
RUN  

H HA HAM 
HAMB 
HAMBU 

HAMBUR 
HAMBURG  

5.3.3.  
 

5.4 PRINT AT ''  

This statement allows the output of numbers and strings to the 

screen from a position defined by ') '. A constant, numeric 

expression, or numeric variable can be used as a definition (5.4.1). 

The value must be in the range of O to 511, corresponding to the 

512 positions of the screen (5.4.2).  

The targeted output to the screen can achieve interesting effects. 

(5.4.3) prints a flashing line to the screen. Programme (5.4.4) 

shows the programming of an input mask. Here the shape (5.4.5) 

is used to place the cursor on a screen position defined with X to 

place the subsequent INPUT statement. In this programme, also 

observe the strict separation between the text of the image in 

DATA lines and the structure of the mask.  
 

PRINT 500,"A" 

PRINT6 122,"B" 

A=150  
PR INT A2, ‘C’  

 

10 CLS  
20 PRINT 192,"LASER210" 
30 FOR I=1 TO 100: NEXT 
40 PRINT 192,"AsER21?]" 
50 FOR I=1 T0 100: NEXT 
60 G0T0 10  

5.4.3.   



34  

 
0 

32 
64 
96  

128 
160 
192 
224 
256 
288 
320 
352 
384 
416 
448 
480  

 

                                                                
                                                                
                                                                
                                                                
                                                                
                                                                

L A S€  R 2 40                                                 
                                                                
                                                                
                        C                                       
                                                                
                                                                
                                                                
                                                                
                                                                
                                        k                       

 
5.4.2.  

 

10 DIM 2(5,1): COLOUR,1 
15 ・======= MASK 
CONSTRUCTION 20 CLS: 
RESTORE  
30 FOR A=O TO 448 STEP 64  
40 READ A$: PRINT@A,A$: NEXT 
50 " ===== INPUT  
60 FOR I=O TO 5: PRINT140+I6) ,;:INPUT Z1,@) 70 
PRINT148+164), ;:INPUT ZI,1:NEXT  
80 PRINT444, 
"OK?" :PRINT478,"J" :PRINT476, ;:INPUTJ$ 90 IF 
ASC(J$)<>74THEN 20  
91 COPY  
200 ・======= TEXT IMAGE CONSTRUCTION  
205 DATA "k CENSORSHIP MANAGEMENT ++++" 210 
DATA "+FACH+k POINTS CENSORSHIP"  
.220 DATA GERMAN,ENGLISH,MATH,PHYSICS,BIOLOGY,FRENCH.  
 

            5.4.4. 

****  CENSORSHIP 
MANAGEMENT  

**** 

+kFACH#k POINTS  CENSORSHIP   

GERMAN  ? 23  ? 6    
ENGLISH  ?  234 ? 1    
MATHE  ?  34  ? 4    
PHYSICS  ?  78  ? 2     



 

BIOLOGY 

FRANZOES.  

 

? 23? 

67  

 

? 

Fiv

e? 

2  

3
5  

 
0K?  

? J  

5.4.4.  

 

 100 PRINT@ X; INPUT A$   l  

5.4.5.  

5.5 PRINT USING  

PRINT USING causes the formatted output of numbers. The 

USING statement can be used in PRINT statements individually or 

as a last statement with other formatting functions and control 

characters ( TAB(X), ',', ';', ' @') (5.5.1). After USING, a string 

containing an output rule (mask) for the number to be output must 

always be defined. The basic elements of this mask are the 

characters '#' and '.'. The '#' represents a digit position, the dot 

represents the decimal point as a placeholder (5.5.2).  

If the decimal places in the output exceed the places specified in 

the mask after the point, the round shall be completed (5.5.3).  

If the digits before the decimal point of the mask are exceeded by 

the number to be emitted, the total number is returned with a "%" 

sign (5.5.4).  
 

US ING "###"  
5. 5.1.  

 

PRINT US ING "##.#";8.5 8.50  
5.5.2.  

 

PRINT US ING "###";.34 0  
5.5.3.  

 

PRINT USING 
"##.##";315,753 %3.15. 75  

5.5.4.  
 

PRINT US ING "##";-
12 %-12  

5.5.5.   



36  

The negative sign shall also be preceded by a space in the mask. 

The number -12 must be prepared for output with '###' in the mask 

(5.5.5).  

To control sign output, a '+' in the first position of the mask causes 

the positive or negative sign to be emitted before the number. The 

'+' at the end of the mask causes the sign to output after the 

number (5.5.6).  

A '-' sign at the end of the mask allows negative numbers to be 

marked by a minus sign (5.5.7).  

A double '' character in the first two digits of the mask fills all 

unused positions with the '' character (5.5.8), the so-called 

protection star, when output.  

The double '$' character will cause a dollar sign to be printed 

immediately before the number. A combination with the character '' 

is possible (5.5.9).  

 
PRINT US ING "+###' ;12    
+12        

PRINT USING "###+";-12    
12-        

      5.5.6. 

PRINT US ING "###-" ;-12    
12-        

PRINT USING "###-";12    
12        

      5.5.7. 

PRINT USING  "wx####.#" ;12  

+xx12.00      
      5.5.8. 

 
PRINT US ING "$####"; $12 $12.00  
PRINT USING "$####" ;-12 -$12.00  
PRINT USING "+$####.##" ; 12 
+$12.00  

5.5.9.   



37  

A comma on the left of the decimal point separates after three 

digits in the integer part of the number (5.5.10). Large numbers 

become easier to read.  

An exclamation mark in the first part of the mask causes the first 

character of a string specified after the mask to be printed. 

Combination with other characters is possible (5.5.11).  

 

POKE 30977,8:'DBL.PREC. 
A=112678,989  
PRINT USING "#######,.##";A 112,678.99  

5. 5,10  

 

AS="HAMBURG"  
PRINT US ING "1####"; A$;12.24 
H12.24  

5.5.11  
 

10 FORI=1TO7:READA  
20 PRINT,,USING"#######,.##- DM";A 
30 NEXT  
100 DATA.123,12.999,124375.89,-12,375,1.34E2,1.23E-2  

DM .12  

13.00 DM 
124.376.00 DM 

12.00 DM  
DM 375.00  
DM 134.00  

DM 0.01  
5.5.12  

 

All non-functional characters can be placed in the mask at the first 

or last place. They are then also issued at these positions. 

Programme (5.5.12) demonstrates this. In principle, one spot in the 

screen is reserved for each character in the mask.  

5.6 LPRINT  

All the tax instructions that work with PRINT also work with LPR 

INT: Print output, together. However, some special features should 

be taken into account.   



38  

The comma tabulates in a line that contains 128 characters. In 

every 16. Column is a tabulated position. If a printer is used with 80 

characters/line, pre-tabulated positions are selected in the first line 

5. The distance here is 16 characters.  

If more than 5 tabulator positions are controlled with an L_PRINT 

statement, three additional tabs are added in the second line 

(5.6.1 ).  

PRINT USING works in the form LPR INT USING as on the screen.  

Also, the control character ';' will work with LPRINT as usual from 

the screen output.  

The TAB (X) function tabulates from X=O to X=63 in one line. TAB 

(64) tabulates again in column 0. With LPRINT TAB (X) you can 

only tabulate in columns O to 63.  

 
LPRINT 1.2.3.4.5.6.7.8.9.10.11.12.13.14  

 
1 
6 
9  
14  

2  
7.
10  

 

3 

8 

11  

4.

12   
5. 
6.1.  

5 

13  

 

6 Help for the programmer  

STOP, CONT, TRACE ON, TRACE OFF, LIST, DELETE, CAR  

A blocky programme structure is required for efficient programme 

editing and debugging. I.e. the programmer should assign recurring 

structures in his programme to fixed areas of line numbers. Already 

at the list. This allows you to access individual sections of the 

screen. The following framework for a BASIC programme is partly 

based on programming considerations. For example, finding 

subprogrammes for the interpreter is much faster when they are at 

the beginning of the BASIC programme.   



 
10  
100.
500.
1000
.200
0.30
00  

5000 

8000 

10000 

20000  

39  
 

GOTO 20000: JUMP TO MAIN PROGRAMME SUBPROGRAMMES, E.G. 
COMPUTING, STRINGMANIPULATIONS LOOP WITH INKEY$  
INPUT VON DER FLOPPY  
PRINT ON THE FLOPPY  
PRINTER:MAIN SUBPROGRAMMES  
FORMAT IERUNGS SUBPROGRAMMES  
OTHER PERIPHERY ( CASSETTE) FORMATTING 
INSTRUCTIONS FOR OTHER PERIPHERY DATA - READ 
ROUTINES  
DATA LINES, COLLECTED  
MAIN PROGRAMME********  
INITIALISATION OF THE MOST COMMONLY USED 
VARIABLES WITH DIM  
MAIN EXPIRY CONTROL MENUE COMMAND LEVEL WITH 
ON ... GOTO 30000,40000, ....  

6.0.  

 
In a programme built in this way, the LISTKommando can quickly 

access a part to revise the programme.  

LIST  

For the sake of completeness, the LIST command is briefly 

addressed here: LIST (CR) rolls the entire programme across the 

screen. Fast readers can download the output at the  

LIST 
LIST 10  
LIST 100-200 
LIST -1000 
LIST 100 

6.1.  
 

10 INPUT ‘DEZ.ZAHL 0-255’;D 
20 FOR I=7 TO 0 STEP -1  
30 PRINT SGN (D AND 2 tI); 
40 NEXT I: PRINT  
50 LIST 20-40  
RUN  
DEC.NUMBER 0-2552 127  
0 1 1 1 1 1 1  
20 FOR I=7 TO 0 STEP -1 30 
PRINT SGN D AND 2I; 40 
NEXT I: PRINT  

6.2.   



40  

Press the SPACE key to stop and press again. (6.1) shows the 

possible parameters of the LIST command. The '-' stands for 'from 

beginning to ...' or 'to the end'. By the way, LIST can be the last line 

in the programme. A trial run is then always completed by deleting 

the currently processed routine (6.2). (note: This small but effective 

routine converts a decimal number into a binary number!)  

BASIC UP: DELETE  

Further assistance will again be provided by the BASIC extension: 

the DELETE statement. It is given with parameters and deletes the 

statement lines in the programme listing as specified in the 

parameter part. It is possible to delete a line with DELETE #, but 

you prefer to enter the line number followed by RETURN. In 

addition, DELETE # - # deletes a block in the programme from line 

X to line Y. DELETE -Y deletes from programme start to specified 

line number.  

DELETE should not be used in the programme as an editing 

instruction. A corresponding error message is then displayed.  

 

DELETE 10  
DELETE 200 - 300 
DELETE - 100  

6.3.  

 

AUTO - Auto Line Numbers Default  

The AUTO X,Y statement automatically specifies the next line 

number in edit mode, where X is the line number from which the 

default value starts. Y is the step. AUTO 10.10 generates line 

numbers starting from 10 in 10-bit spacing, i.e. 10, 20, 30, etc.  

If AUTO is entered without parameters, then 10, 10 is automatically 

set. AUTO 350,50 numbered from 350 with step 50, AUTO 0,5 

numbered from 10 with step 5 and AUTO 130 equals 130, 10. The 

operating system maintains all routines of this function. The word 

'AUTO' is not recognised, but the function can be set with three 

POKE statements   



41  

are switched on (6.4). CTRL-BREAK cancels the automatic 

numbering. If the last POKE statement (6.4) is given again, the 

AUTO operation will resume with the next number.  
 

TURN ON CAR:    
-.—.—.  

  
(Method  1)      
POKE 30946,10      

(STARTING 
 

LSB)    
POKE 30947.0      

(STARTING 
NUMBER  

(MSB)    
POKE 30948,10      

(STEP  LSB)    
POKE 30949.0      

(STEP  (MSB)    
POKE 30945,255      
(LAUNCH, RESTART)    

      6.4.1.  

TURN ON CAR      
—    
—    (Method  2)      
10 PRINT 10,10:  'FIRST ROW!  

(FROM KEYBOARD:)    
POKE 31469,183:  ' 

TOKEN  
CAR  

(STARTS AUTO FUNCTION:)    
RUN        
(RESTART OF CAR FUNCTION  

TO BREAK:)      
POKE 30945,255      

      6.4.2.  
 

BASIC UP CAR X,Y  

The AUTO mode can be switched on with the BASIC extension 

BASIC-UP (6.5) and also with CTRL-BREAK.  
 

CAR  
CAR 350, 50 
AUTO, 5  
CAR 130  

6.5.   



42 

TRACE ON -TRACE OFF,  

Gradual processing of the BASIC programme  

Another function of the operating system, which can also only be 

switched on and off with POKE instructions, is the gradual 

processing of the programme or a programme part with the output 

of all edited line numbers to the screen.  

This feature is especially useful for branching instructions such as 

IF ... THEN... ELSE and GOTO, GOSUB, ON... GOTO... and ON... 

GOSUB... test. The instructions for powering this mode of operation 

('TRAGE ON') and for turning it off ('TRACE OFF') show (6.6). The 

example (6.7) will output the programme for converting decimal 

numbers into binary numbers (6.2) in the TRAGE operation. Here 

the working methods are clear: Typing from the keyboard and 

output to the screen is displayed normally, while the number of 

lines being edited is added to the screen one at a time in the angle 

brackets. A precise programme analysis is possible.  
 

POKE 31003,63: 'TRACE ON 

POKE 31003,0 : 'TRACE OFF  
6.6.  

 
RUN 
DEZ.NUMB
ER 0 1 
{ READY  

 

0-2552 127  
1 1 1  

 
1
  
 

POKE 31003,63 
READY  
RUN  
<10>DEC.NUMBER 0-255? 127  
<20><30> 0 <40><30> 1 <40><30> 1 
<40><30> 1 <40><30> 1 <40><30> 1 
<40>30> 1 <40> READY  
COPY  

6.7.  

 
STOP and CONT and CTRL/BREAK  

The regular BASIC statements STOP and CONT are   



43  

also intended for testing the BASIC programmes written by the 

user.  

The CTRL/BREAK key has the same effect as the STOP statement. 

Both interrupt the programme flow, STOP at defined point in the 

programme, and CTRL/BREAK at this key combination. CONT 

stands for CONtinue and continues the programme with the next 

statement to edit. - How can these instructions be used to detect 

errors? Here is an example:  

In a somewhat structured programme (see the beginning of this 

chapter!) a bug is suspected in a programme part. A 'STOP' 

statement is inserted before and at the end of the programme 

section. When the first STOP statement is reached, the programme 

is terminated with the message 'STOP in XX', where XX is the line 

number in which the STOP statement was executed. It is now 

possible for the programmer to redefine data for the programme 

part, to continue the programme with the statement 'CONT' and to 

query the result of the data processing from the keyboard with the 

second STOP.  

A gradual control, not of the programme run as in TRACE ON', but 

of the processing of all data, is possible. Example (6.8) shows the 

screen copy of such a work. A programme that was cancelled with 

the CTRL/BREAK key can also be resumed with CONT. For both 

types of abort, it must be stated restrictively that after changes in 

the programme listing, it cannot be started with CONT again. A 

new programme start with RUN is then necessary with loss of all 

the data previously generated.  

If you want to continue a STOP programme elsewhere, the GOTO 

XX keyboard can resume the programme run at the location 

marked XX without data loss.  

For example (7.8): In a loop, four field variables are assigned the 

square of the loop variables. In a STEP -1 reverse loop, the results 

are   



44  

, but not four, but five. The line 35 STOP is entered for testing. The 

test run then shows that the loop counter is 1 greater than the 

value defined with TO after the line is finished. The output loop will 

then add 5 outputs to the screen.  

 

10 FOR !=1 TO 4 
20 AI=I  
30 NEXT I  
40 FOR I=I TO 1 STEP -1 
50 PRINT AI;  
60 NEXT  
RUN <CR>  

0 16 9 4 1 READY  

35 STOP <CR> 
RUN <CR>  

BREAK IN 35 
READY  

PRINT I,A(I) <CR>  
 5  0  

6.8.  

 
7 Text graphics, function and application  
 

2000 characters Resolution, quarter graphics, a quarter learns 

to run The LASER screen can display 512 characters in text mode 

(MODE (0)): 16 lines, 32 characters. Each memory cell of the video 

RAM can be described with the POKE statement and read with 

PEEK. In BASIC programmes, a memory cell can be described with 

the base address 28672 and the coordinates X (position in the row) 

and Y (line number), where X can take the values O to 31 and Y the 

values 0 to 15. A character position can be described with 28672 + 
(Y32) +X. In the distribution of the screen shown in the appendix, 

the selected character position is in row 8 and column 7. The 

corresponding RAM memory address is then:  

28672 + (832) + 7 = 28935   



45  

With POKE address,code, every character is to be brought to the 

screen specifically. (codes: See Annexe 13.)  

The example (7.3) brings to 12. Row, 20. Column an 'A'. Note that 

column and line numbering starts with 'O' at a time! Also note that 

the screen code is not the same as the ASCII code!  

2000 characters resolution on graphics!  

The graphic character set includes 16 characters of quarter 

graphics. There is a character set for each of the 8 colours of the 

video controller.  

Quarter Graphics increases text resolution from 512 to 2048 points!  

In order to use the 816 characters in a targeted manner, the 

structure and organisation should be described below.  
 

VIDEO RAM: 

28672 - 29183 

7000H - 71FFH  
7.1.  

 

CHARACTER ADDRESSING: 

28672 + (Y32) + X  
7.2.  

 

10 X=20: Y=12 
20 8R=28672  
30 POKE BR+Y32)+X.1  

7.3.  

 
Each screen position is divided into four rectangles. The 

combination of set and deleted quarters allows the display of 16 

characters. If the screen code of a graphic character is binary, the 

character is encoded in the four low-value bits, the bits 4-6 

describe the colour and Bit 7 displays the graphic.  

Now let's turn to bits 0-3. These four bits can be used to encode all 

16 graphics characters. Bit 0 describes the bottom right quarter, bit 

1 the bottom left quarter. Accordingly, bit 2 will be displayed in the 

upper right and bit 3 in the upper left. Is used in   



46  

If a quarter is set, the corresponding bit position is set to 1.  

The graphic character [ is represented by the binary number 0100.  

BASIC does not allow binary numbers. In order to calculate the 

necessary code to create graphics in BASIC, a 'value' is assigned 

to each quarter (7.7). The character code is calculated as an 

addition of the values of the set quarters. Example:  

] ++s-s El 
1+2-3  ‘1 +2+8= 11  

Compare to the table below. But with this decimal number we do 

not have the code number of the graphic character. Add the colour 

value to the character code and the value for graphic = 128!  

 

X  
267?  

 17  1  
 -4—'-  '   1  1  
 
 I  I  1  

- r - - 
- - - 
- - - 
- t- - , 
- - 1  

 

7  
 

y  7.4.  

 

7 6 5 4 3 2 1 0  

~Characters ~— Colour 

(see table) L— Flag Graphics  
0=Text  
1=Graphic  

7.5.  

 

 

 

1  

1  

 
0
   

7.6.   

T



47  

Example: Calculation of the code for the ze 
E with the colour 'cyan':  
 

Character code = 1 + 2 + 8  
Colour  = cyan  
graphic value  =  

 

= 11 = 

80 

128  

 

 

jm  

 
7.7.  

 

No. Graphics  Code  

- — — — — — — — — - - — —  
0  D  0000   
1  a  0001   
2  liiJ  0010   
3  l.  0011    
4  [  0100   
5  [I  0101   
6  lp  0110   
7  ~  0111   
8  e  1000   
9  ~  1001   
10  IJ  1010   
11  

.. 
1011   

12  ~  1100   
13  !I  1101   
14  I!  1110   
15  

・
1111   

    7.8.  

 
10 GR=128: BR=28672  
20 FORC=0T0127 STEP16 
30 FORZ=1 T015  
40 CH=GR+C+Z  
50 POKE BR,CH  
60 BR=BR+1  
70 NEXT Z,C  

7.10  

 

A demonstration programme can now be constructed from the 

previous experience, which calculates the graphic signs in all 8 

colours and brings them to the screen (7.10).  

To work graphically on the screen, the characters must be 

manipulated. Each quarter must:   

Code to set with POKE = 219 Use the 

example programme 7.3 for control! 

NO. COLOUR  CODE  VALUE  

—  
0  GREEN  000  0  
1  YELLOW  001  16  
2  BLUE  010  32  
3  RED  011  48  
4  BROWN  100  64  
5  CYAN  101  80  
6  MAGENTA  110  96  
7  ORANGE  111  112  

      7.9.  



48  

of the graphic character. Example:  

A set quarter under the video RAM address BR should be moved 

to the right by a quarter square (7.11). The following steps are 

necessary:  

1. Read Video RAM under BR.  

2. Determine which quarter is set.  

3. If the left quarter is set up or down, then .. _  

... delete left quarter, ... 

right quarter,  
... and add to RAM under BR.  
4. is set the right quarter up or down, then ...  
... Increase BR by one.  

.. . delete right quarter, ... 

left quarter,  
... and under BR.  

 

BEFORE:  

BR BR+1 ..  
 

 
 

AFTER:  
 

 
 

 

I  

y  

 

10 BR=28672  
20 POKE BR,200  
30 IF BR<29184 THEN 
GOSUB 100: GOTO 30 40 
END  
100 FC=INT PEEK(BR) /16) 16  

7. 
11  

 
7,12   



A "quarter" learns to walk! 

The following programme moves a quarter-square across the 

screen! (7.13) 

Row 10 sets the beginning of screen RAM, line 20 writes the first 

graphic character. The following line represents the main 

programme until the end of the video RAM is reached, as long as 

the subroutine calls 100. Lines 100 and 110 read the last character 

under BR and set graphic and colour code in FC and the character 

code in ZC. Row 120 then deletes the last character. Row 130 

calculates the new character code as a function of the old code 

and, if necessary, increases the video RAM address BR. Line 140 

writes the new character to the screen, in 150 returns to the main 

programme. - Let's take a closer look at line 130! 

Since we initialised the first graphic sign with the code 200 in line 

20, we work with the colour 'Brown' and the quarter value = 8. So in 

ZC we have to expect an 8 in the first run. 

if ZC = 8,  THEN the character is = ~  

OTHERWISE it 
is a 

[ with who=4. 

If it is an 8, then the character is associated with AND operand 7: 

1ooo.... ] o 

l 
・—・—・ .. ・— 

0000 ..... □ 

8 

AND 7 

Result 0 

The sign is erased! 

 
 
 
 
 
 
 
 
 
 
 
  

            49 

  11 o ZC=PEEKBR) -FC      
  120 POKE BR, FC        
  130 1F ZC=8        
      THEN ZC=ZC  AND 7 OR 4    
      ELSE ZC=ZC  AND 11 OR 8    
      : BR=BR+1        
  140 POKE BR,  ZC+FC      
  150 RETURN        
            7.13   
            

7,141  [ A  PEEK (BR)    



50  

 0  0000  ......... □  

 ~-~—01 oo _  ................................................ —~—  

 Result  4  0100..... [  

The upper right quarter is set!  

Now perform the link for the ELSE part of the statement! There, a 

recognised 4 must become an 8 again. To change from 4 to 8 you 

also need to increase the VideoRAM address.  
 

POKE BR, code  
7,15  

 

IF PEEK (BR) AND 1 THEN (set)  
ELSE (not set)  

7,16  
 

Below is a summary of the BASIC instructions for reading, writing, 

testing, setting, and deleting graphic characters and graphic 

districts:  

Read a screen line (7.14). Write a screen 

cell (7.15).  

Test whether a quarter is set or deleted (7.16).  

AND 1 tests neighbourhoods with 

value 1 AND 2 tests 

neighbourhoods with value 2 AND 

4 tests neighbourhoods with value 

4 AND 8 tests neighbourhoods 

with value 8  

A quarter will be deleted (7.17).  

AND 210 deletes 1 AND 195 quarter 

deletes 2 AND 165 quarter deletes 4 

AND 105 quarter deletes 8 quarter  

(Colour code and graphic value are not changed!) A 

quarter is set (7.18).  

0 R 1 sets quarter with value 1 

0R 2 sets quarter with value 2 

OR 4 sets quarter with value 4 

OR 8 sets quarter with value 8  

Of course, you can also set, test and delete several quarters at the 

same time with corresponding operands.   



51 

POKE BR, PEEK(BR) AND 210 
7,17 

POKE BR, PEEK(BR) OR 1 
7/18 

The following programme creates a bar chart to graphically display 

10 numbers in V( 1) with colours stored in field F ( 1). Now, try to see 

how this programme works using the flowchart. 

LOOP I 1 TO 10 

ITEM 1. CALCULATE CELL 
VIDEO RAM FOR BALKS 

RAM NOT DESCRIBED WITH 
GRAPHIC CHARACTERS? 

J 

 N  ________________________________________ ___, 

MITL3 DESCRIBED? 

DELETE READ VALUE 

[I ENTER 

L ENTER RAM POINTER -32 

GRINDING J,I 

END 7/19 

10 CLS 
20 FOR I=1 TO 10: READ VI, FI: NEXTI 
30 DATA 2,128,12,144,14,160,15,176,21,192 40 
DATA 23,208,8,224,14,240,23,128,2,14 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



52 

100 FOR I=1 T0 10  
110 Y=15: X=4+I2): G0SUB 210 
120 FOR J=1 TO VI  

 130  A=PEEK(PR): IF A=32 0R A=96 THEN A=0  
 140  IF A AND F(I)+1 THEN POKE PR, A OR 

F(I+5 : G0SUB 200: G0T0 160  
 150  POKE PR, A OR F(I)+1  

NEXT 
J 170 NEXT 
I 180 END  

200 Y=Y-1  
210 PR=28672+Y+32) +X: RETURN  

 
 

28672 
28704 
28736 
28768 
28800 
28832 
28864 
28896 
28928 
28960 
28992 
9024 
29056 
29088 
29120 
29152  

 

                                                                
                                                                
                                                                
                                                                
                                                                
                                                                
                                                                
                                                                
              1                                                 
                                                                
                                                                
                                                                
                                                                
                                                                
                                                                
                                                                
 
0
  

7
  

31   

7,20   



53  
 

8 More graphics and sound  
 

The character " -", INVERS, Cursor control,  
COLOUR with the LASER 110, FASHION and background 

colour, BUZZER on-off  

8.1 The character "-" 

8.2 INVERS  
8.3 Cursor Control  
8.4 COLOUR with the LASER 110 

8.5 FASHION and background 

colour 8.6 BUZZER on-off  
 

8.1 The sign ""  

There is a character in the LASER character set that cannot be 

generated from the keyboard: It's "f;-". However, it can be chained 

to or chained to strings using the instructions as in (8.1.1) or, as in 

(8.1.2), placed directly on the screen.  

8.2 INVERSE  

Characters can be placed on the screen as INVERS constants 

(8.2.1 ).  

The[CTRL] {INVERS] shortcut sets or clears a bit in the operating 

system's 7838H flag register. The output of variables and 

constants to the screen can thus be set or delete the INVERS flag 

normal or INVERS  
 

PRINT CHR$ (95)  &:f NT CHR$ (223)  

POKE 28672,31 

POKE 28672,95  
8.1.1.  

 

A$100=A$+CHR$(95)+B$  
8.1. 2  

 

10 PRINT "HAMBURG"  

.9#ä" "au  

 
 

INVERS a.  1 NVERS out. 
8.2.1.   



54  

 

POKE 30776,PEEK30776) OR 2 8.2.2  
 

POKE 30776,PEEK (30776) AND 253 8.2.3  

 

10 A=123,375:F=30776   
20 POKE F, PEEKF) OR 2  
30 PRINT A,F      
40 POKE F,PEEK(F) AND 253 
50 PRINT A, F      
 
RUN  

[123,375  
123,375  

 

30776]  
30776  

8.2.4  
 

and. (8.2.2) sets the flag, all the following issues in the programme 

are represented in INVERS. (8.2.3) deletes the flag, the following 

output to the screen is brought in normally. The small programme 

(8.2.4) shows the application.  

8.3 Cursor Control  

Any cursor control commands that are given by the keyboard when 

editing the programmes can also be included in the programme. 

You can create menu controls, input masks, backups, and graphics 

optimally (8.3.1 ). The execution of these functions in the 

programme is programmed with PRINT CHR$ (code), or the code is 

chained to or in a string with the string concatenation operator "+". 

The example (8.3.2) backs up an input.  

For example (8.3.3), you can specify a commonly used value 

(default value) to enter different values. This value can then either 

be applied with RETURN or it will be overwritten.  
 

cursor 1 in nks  8    
cursor right  9    
cursor Up  27    
cursor Down  1 0    
cursor 'Home'  28    
Clear Screen  31    
CR (RETURN)  1 3    
Insert   21    
ruby    127    
      8.3.1. 
  



55  

The cursor control codes can be copied from the keyboard and 

processed with INKEYS.  

 
100 INPUT ‘ELCHES FACH’;K  
110 IF K<1 OR K>7 THEN PRINT CHR$(27);CHR$27): G0T0 100 8.3.2  
 

10 PRINT "YOUR CHOICE_2";CHR$8);CHR$8); CHR$(8) 20 INPUT I  
RUN  
rwe w・2]  

8.3.3.  
 

8.4. COLOUR... with the LASER 110  

Although the LASER 110 cannot produce colour on the screen, it 

knows the COLOUR statement. It can be used wisely.  

The key combination CTRL/N produces the word 'COLOUR' on the 

screen. If the instruction is given with the parameter 1, as in (8.4.1), 

the contrast of the image on the monitor or TV receiver improves.  

In addition, graphics can be displayed in different grey values. A 

table of grey values creates the programme (8.4.2).  

Since the LASER 110 works with the same operating system as 

the LASER 210 Colour computer, the PAL colour coder can be 

easily retrofitted (Appendix 8). The BASIC statement COLOUR will 

then work properly and generate the colour as indicated for the 

colour computers LASER 210,310 and VZ200.  

COLOUR,1 <RETURN>  
8.4. 1  

 
10 FOR I=1 TO 8 20 
COLOUR I  
30 PRINT I;’ 40 

NEXT I  

 

'SHIFT J 8.4.2  

 
8.5 FASHION and background colour  
The LASER video controller allows two modes of operation:  

1. Text and Quarter Graphics  

2. High Resolution Graphics   



 
FASHION 
(O) 
FASHION 
1  

56  

Switching is done in BASIC with MODE (x). The text operation 

mode is initialised after power-up. MODE (1) switches to high 

resolution graphics. MODE (0) switches back to text mode 

(8.5.1).  

The switch is controlled via the 'Output Latch' (8.5.2). Bit 3 

switches to text mode, a 1' turns on the high resolution graphics.  

Bit 4 controls the background colour accordingly and selects 

three foreground colours in the 'high-resolution graphics mode' 

(see Table 8.5.3).  

In BASIC, the background colour can be determined directly or 

from the programme, as in (8.5.4), without the foreground colour 

being called.  

The POKE statement eliminates the need to control the mode 

and background colour, because the MODE (x) and COLOUR 

statements provide powerful options for the BASIC programmer.  

 

TEXT AND QUARTERGRAPHIC 
HIGH-RESOLUTION GRAPHIC 
8.5.1  
 

  5  4 3 2  1 0  6800H    

[ o  lo  lo  I-I-ll  WRITE  ONLY  

  

l l t 
    t- BUZZER   

        DISPLAY MODE  

          BACKGROUND  
            BUZZER   
                8.5.2. 

  BIT4  TEXT    GRAPHIC    

  l   GREEN   G~LB GRÜN    
              BLUE    
          RED    
  1    BROWN   BRi~UN CYAN    
              ORANGE    
          MAGENTA    
                8.5.3. 
  



57 

COLOUR,O 

COLOUR,1 
GREEN 
BRAUN 

8.5.4. 

8.6 BUZZER on-off 

Bit O and bit 5 of the 8.5. described 'Output Latch' control the 

buzzer. Here, too, the control will normally be performed using the 

BASIC statement SOUND. However, the operating system 

maintains a copy of the Output Latch at 783BH/ 30779. The buzzer 

can be switched on and off via this tab (8.6.1). 

POKE 30779,<ll 
POKE 30779,1 

UZ2ZER 'OFF' 
UZZER 'ON' 8.6.1 

9 Peripheral control with INP and OUT USER port: Control with INP 

and OUT circuits and examples in BASIC 

The LASER computer (LASER 110, 210, 310,VZ200) has an 

interface control system that allows it to exchange data and control 

commands with external devices. 

This data exchange takes place under a total of 256 addresses, 16 

of which are assigned to an existing or possible device. 

Of these 16 input and output channels, the first eight are reserved 

for system functionality. The operating system controls 

LASER computer input-output channels 

Device 

Printerinterface (Printer) 
Floppy Disk Controller 
Joystick Interface Reserved 
for future system extensions 
6l4 KB RAM memory bank switch 

Free for User Extensions User Port 
Module 

9.1. 

 
 
 
 
 
 
 
 
 
 
  

Adr.  1 0.  Adr. (16) 

0 - 15  OOH  - OFH 
16 31  10H  1FH 
32 47  20H  - 2FH 

48 111  30H  - 6FH 

112 - 127  70H  - 7FH 

128  - 
239  

80H  EFH 

240  - FOH  FFH 



 
LASER 110 

LASER 210 

LASER 310  

Vz 200  

58  

 
...  

 1  3・6 

J System  
(free)  

 

l 

'
  

 

<J PERIPHERIE BUS [>  

 
rr— —r— —,y-{ ,  

 USER-PoRT ' Free for  {User;_ yfrweiterungeri}  qa'  
o-__lJ_2—h—"-J  

 

9.2.  

 
INP (address) A= 

INP (X)   
9.3.  

 
OUT address,date OUT 

254,130  
9.4.  

 

these channels printer and floppydisk controller, reads the joysticks 

and switches the RAM memory banks of the RAME extension (9.1 

and 9.2).  

The other eight channels are designed for user functions. A USER 

port module is now available here.  

The control of the traffic and the data exchange itself can now be 

done from an assembler routine or from a BASIC programme 

written by the user.  

The BASIC interpreter provides the INP (X) function for the reading 

of data. The variable X, also a constant, must be a longer number of 

O to 255. It defines the address at which data should be read from 

one of the peripherals (9.3).  

With the OUT X,Y statement, the BASIC programme passes data 

and control instructions to the device specified by the number X. 

The transmitted data in the range of O to 255 are represented here 

by variable Y. For X and Y, constants or radio   



59  

options to describe the values (9.4).  

An example of reading in data from a peripheral device already 

shows the chapter for programming joysticks.  

The 64KB RAM expansion  

The 64 KB RAM expansion occupies a memory range of 32 KB. It 

is divided into four memory banks of 16 KB each (9.5). After the 

device is turned on, the available RAM area is occupied by the 

memory banks 'O' and '1'. This makes a total of 32 KB RAM 

available to the BASIC programmer. A larger memory area is 

physically not possible, and the BASIC interpreter cannot manage 

more than 32 KB RAM.  

~ —  

 
 

BANK 0  
 

BANK 1 BANK 2 1 BANK 3 1  
 

9.
5.  

-70  

ENTER MOS  

 

BANK SHIFT    
—  

OUT 127.0 BANK  0 

OUT 127.1 BANK  1 
OUT 127.2 BANK  2 
OUT 127.3 BANK  3 

9.
6.  

 
 

 

Port  

10K ] ENTER 
SWITCH  

 

-3 l. 

ENTER TTL U. 5V 
CMOS  

 
  

" 
  

-.b  
・・  

  

Port    

TTL INTERFACE  -MOS INTERERFACE    

5  

-ski"i  

  
2702    

... Port 7405 f  
  

Port    
ANS CONTROL LED  CONTROL RELAIS  9.7. 

  



60  

The use of the memory banks '2' and '3' in a BASIC programme is 

problematic, since Appendix 11 shows that the string area and the 

BASIC stack would then be in the area of the bank '1'. If Bank '1' is 

replaced by Bank '2', the BASIC programme will lose all data stored 

as strings, and the information lost in the stack area about GOSUB 

return addresses and active FOR-NEXT loops will lead to a 

collapse of the BASIC interpreter.  

Nevertheless, a BASIC programmer can use the existing benches. 

In the '2' and '3' benches, assembly routines and data stores 

described in the BASIC programme with POKE and read back with 

PEEK would be conceivable. By moving the pointer 'Top Of 

Memory' (see chapter 12), the BASIC programme can run in the 

bank 'O'.  

All benches can be used easily under the control of a machine 

language (ML) routine. It makes sense to place the main 

programme in a bank and use the other banks for filing 

subprogrammes and data. Only the switching mechanism must be 

used in a controlled manner.  

The Bank Switch is connected to the Peripheral Bus as a Write 

Only Latch. Accordingly, the switch is made in BASIC programmes 

using the OUT statement (9.6).  

The USER port  

The user port is device 16 on the peripheral bus. It is a universal 

circuit for the control of all kinds of electronics and consists mainly 

of a multi-function chip of type・ 8255. Twenty-four lines can be 

used as inputs or outputs under programme control. They can be 

connected to TTL or CMOS circuits and control transistors, LEDs 

and relays. Combined with the electronics of a model railway or 

connected to alarm system, heating control or other electronics, the 

BASIC programme can take control and evaluation. (9.7) shows 

interface possibilities. The following pages show programme design 

and application with circuit examples.   



61  

The USER port will be set to address 255 for the intended 

application. The 24 input/output lines are organised into three 

groups of 8 lines each: Port A, Port B and Port C. The port to be 

used as input and the port to be used as output is specified by 

entry in the control register 255. Under three additional addresses, 

these ports can now be set or read (9.8).  
 

OUT 255.X  CONTROL REGISTER  SET  

OUT 254.X  PORTC WRITE    
INP (254)    READ    
OUT 253.X  PORTB WRITE    
INP (253)    READ    
OUT 252.X  PORTA WRITE    
INP (252)    READ    

      9.8.   

9.1 Digital/Analogue Converter    

 

A sawtooth output voltage is generated.  

10 0UT 255,139  :'CONTROL REGISTER PORT A OUTPUT  
20 FOR I=0 T0 255  :'RAMPE IN 256 STEPS  
30 0UT 252,I  :'AN D/A-WANDLER FROM PORT A  
40 NEXT I  
50 G0T0 20  :'NEXT IMPULSE  

 
 

IO-PORTA  
8Db.  

 
9.2 8-bit Analogue/Digital 
Converter  

 

DIA WANDLER  
 

 
 

Analogue values are continuously converted to digital values and displayed.  

10' PORT B INPUT - PORT CO-C3 OUTPUT - PORT C4-C7 INPUT  
20 'PORT A OUTPUT 30 OUT 255,138  
40 OUT 254,1: OUT 254.0 50 PRINT 
INP (253)  
60 GOTO 40   

:'CONFIGURE 
PORTS :'START OF 
CONVERSION :'SHOW 
VALUE :'READ NEXT 
VALUE 



62  
 

Port B 8 Datasheet. 

10-P0RT  

F'OrIty 4 Handshakeltg 
GN  

 
U 

10 SV  

 

9.3 Switching on/ off relays to control any consumer A lamp is switched 

on or off.  

10 OUT 255,139  :'PORT A IS EXIT  
20' TURN ON WITH OUT 252,1  
30' SHUT OUT WITH 0UT 252,0  

—, 
r  

L...—-1K—8(140 L._L v-  

 
9.4. A 12V motor is controlled in the ON, OFF, right and left hand functions.  
 
10 OUT 255,153  
20' ENGINE RIGHT RUN A 
30' ENGINE LEFT RUN A 40' 
TURN OFF  

:'PORT B OUTPUT 
OUT 253,1  
OUT 253.3  
OUT 253.0  
 

 

 

・
  

‘tg  

 

9.5 Running light with 8 

lamps 10 OUT 255,139  
20 L1)=1: L2)=2: L3)=4  
22 L(4)=8: L(5)=16: L(6)=32 
24 L(7)=64: L(8)=128  

30 FOR I=1 TO 8  
40 OUT 252,LI  

A/DWAND 



 

: "PORT A OUTPUT :'PATTERN 
FOR OUTPUT  

 
:'LOOP TO SHUT   



 

50 FOR V=1 TO 1000: NEXT V 60 
NEXT I  
70 G0T0 30  

NOTE:  
FOR LEFT-HAND RUNS, LINE 30 SHALL BE MODIFIED AS 
FOLLOWS: 30 FOR I=8 TO 1 STEP -1  
 

 
A0  

 

 

,-9o  

 \   za" 
o  

 
 

IQ-PORTA  

 

A7  

'  {K  

'o  or  
8xBC10  

 
9.6 Control of a four-phase stepper motor  

 

10 OUT 255,139  
20 W(1)=1: W(2)=22 W(3)=4: W(4)=8 30 FOR 
I=1 TO 4  
40 OUT 252,W(I)  
50 FOR V=1 TO 250: NEXT V 60 NEXT I: GOTO 30  

FOR LEFT-HAND RUNS, 
LINE 30 SHALL BE 
MODIFIED AS FOLLOWS: 
30 FOR I=4 TO 1 STEP - 1  
 

FOR SEMI-STEP 
OPERATION, THE 
FOLLOWING SHALL BE 
AMENDED: 20 

W(1)=1:W(2)=3:W(3)=2:W(4)=6:W(5)=4:W(6)=12:  
W(7)=8:W(8)=9 

30 FOR I=1 TO 8  

 

 
A1 

IQ-PORTA A?  

A3  

 
1-4-x 1-K-1-L f°  

 

12V   

63 

:'INSCALE 
DURATION : ・ 
NEXT LAMP 

: 'PORT A IS 
EXIT :'DEFINE PATTERN 

: 'ENGINE WRAPPINGS 
SHUT :'SPEED 



64  

9.7 Right/Left Running Light with Visual Age Control  

NO ON SWITCH: RUN RIGHT, ANY SWITCH ON: LEFT RUN.  
 
10 OUT 255,130 
20 A=INP (253)  
30 IF A=O THEN 200  
100 FOR I=128 T0 1 STEP-1 
110 OUT 252,I  
120 I=I/2+1  
130 NEXT I:GOT020 
200 FOR I=1 TO 128 
210 OUT 252,I  
220 1=I2-1  
230 NEXTI: GOTO 20  

 

:'PORT A=OUTPUT, 
B=ENTRY :'SWITCH  
:'NO SWITCH: RUN :'OTHERWISE 
LEFT  
:'I IS PATTERN 1000 0000 :'BIT 
SHIFTING, LOOP VAR KORR. : 'NEXT 
LED ON  
:'CURRENT CURRENT  
: 'PATTERN IS FIRST 0000 
0001 :'BIT PUSH RIGHT  

 

 
IO・
PORT  

  



65 

10 Programming of joysticks 

with INP (X), ON ... GOTO, ON... GOSUB... 

The organisation of joysticks 

The joysticks' switches are arranged in a matrix (10.1 ). The rows of 

the matrix are set to 'O' potential, depending on the address given, 

via the AO to A2 address lines. Table (10.2) shows the addresses. 

The INP (address) statement can be used to read the state of the 

data lines. Depending on the specified address, the DO to D4 data 

lines will indicate which switch was pressed at the time of reading. 

This information, obtained with INP(address), is encoded in 

% Dr 
noo II RFPHTFR 

JOYSTICK 
A1 

} mm}M } hk l LINKER 
JOYSTICK 

D4 3 D2 D1 DO 

10th 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

ADDRESS A3 A2 A1 A0  

—  
27H  39  0  1  1  1  
2H 43  . 1  0  1  1  
2DH  45  1  1  0  1  
2EH  46  1  1  1  0  

          10/2  

27H  39  KEYS FB    
    LEFT JOYSTICK    
2BH  43  KEYS FA, DIRECTION  

    LEFT JOYSTICK    
2DH  45  TASTER FB    
    RIGHT JOYSTICK    
2EH  46  FOOT KEY, DIRECTION  

    RIGHT JOYSTICK    
      10/3 



66  

Form processed as a decimal number by the BASIC interpreter. In 

the form A=INP (address) it is stored in a variable.  

Table ( 10.3) provides the link between address and function. If the 

direction information of the right joystick is to be evaluated, the 

statement 'A= INP (46)' should be included in the programme. 

Accordingly, the other functions shall be dealt with.  

The number measured with the !NP function is in the range of 0 to 

255, according to the 8 data lines D0 - D7. Since only the data lines 

D0 to D4 are used, the with I NP  

(address) value read with a MASK in an AND function. The data 

bits D5 to D7 of the value of the variable are set to '0', the 

information-carrying bits D0 to D4 are not affected in their value 

(10.4).  

So the four instructions for reading the joysticks are:  

 

A =  INP (39) AND 31   JOY  LEFT,  KEYS  FB    
A =  INP (43) AND 31   JOY  LEFT,  KEYS  Prod. DIRECTION  
A =  INP (45) AND 31   JOY  RIGHT,  KEYS  FB    

A =  INP (46) AND 31   JOY  RIGHT,  KEYS  Prod. DIRECTION  

  D7 D6  O5 D4 D3 D2 D1 D0           
  -  -  -  X  X  X  X  X  INP(adr        
  0  0  0  1  1  1  1  1  AND 31        
  —        
  0  0  0  X  X  X  X  X  Result        
                  in A        
                  10/4        

          Table  10.5. provides the context of the encoded lnforma-

          actions stored in the variable 'A' here and the joy-

          key functions.        
 

Using AND masks, you can read individual information at 

addresses 43 and 46 ( Direction and Button A). For example: A 

variable should contain only the information joystick to the right, 

button FA pressed or not pressed. Drawing (10.1) shows push 

button FA on the data line  
D4. Table ( 10.3) returns the address for joystick right, button FA. 

So the read instructions would be: A = INP(46). The mask would be 

equivalent to ( 10.4) binary 0001 0000, decimal is   



67  

value 16. Programme (10.6) shows after RUN that the button FA 

returns 0, otherwise the result will always be 16. So all functions 

are out of operation (=16), only push button FA shows the value 0.  

The conversion of binary numbers to decimal numbers can be 

done with the table (10.7). For all bits of an eight-digit binary 

number set to '1', the value should be added according to the table. 

Example: 1010 0011 binary will be 1+2+32+128 = 163 decimal.  

ADDRESS FUNCTION RESULT  
 JOY  a b  
 
LI  
 

39
.4
3  

 
(a) 
(b)  

 

RE           
  —        
45 TAST.  FB 15 -5    
46 LI, UP  26 6    
  LI,   25 5    
  RE, EW  22 2    
  RE, AB   21 1    
  ADD.    30 10    
  1.    29 9    
  LEFT    27 7    
  RIGHT    23 3    
  TAST.FA  15 -5    
  OFF    31 11    
  —        
A=INPX AND 31      
A=(INPX) AND 31)-20    
        10th 5 
 

10 A = INP46) AND 16 
20 PRINT A: GOTO 10  

10/6  
 

BINARY VALUE  

BIT  VALUE  

0  1  
1  2  
2  4  
3  8  
4  16  
5  32  
6  64  
7  128  

10/7   



68  

ON X GOTO... , ON X GOSUB ...  

The BASIC function 'ON variable GOTO list,list' is suitable for the 

evaluation of the direction addresses. But the LASERBASIC does 

not know the keyword ON. However, because the executing 

routines are present in the interpreter, the ON statement can be 

entered in the correct spelling as in Chapter 3, the first line of the 

programme. Instead of the 'ON' word, another keyword should be 

written, in (10.8) it is PRINT, whose code is changed from the 

keyboard to the code for ON with a POKE statement. If the value of 

the INP function is deducted for direction addresses 20, the result 

will be in the range of -5 to 11. -5 for push button FA can be 

excluded with IF. The code for all 8 directions then ranges from 1 to 

10. 11 returns pressed for 'no key'. This makes it within the scope of 

the ON function, which works as a jump distributor depending on 

the content of the variables named after ON. The variable must 

contain integer numbers from 1 up. After GOTO or GOSUB, a list of 

line numbers follows. The variable =1 branches to the first line of 

the list, with =2 to the second, etc. (10.8).  

Programme (10.9) applies the ON function as described. It is 

intended as a demonstration programme for the joysticks. One 

point is moved across the screen in the graphic MODE(1). 

Drawings can be made on the screen. FB button moves the point 

with the joysticks without drawing.  
 

2 PRINT A G0T0 100,200,300 
1. ROW IN PROGRAMME)  
POKE 31469,161 <RETURN>  

10/8  

 

1 G0T03: '2 ON A G0T0 110,120,130,150,160,170,190,200,210 
2  
3 CLS: COLOUR2,1 :DIM RI3),AD3"3): RESTORE FOR 
I=O TO 3: READ ADD, WI: NEXT: FASHION (1) 10 
SET WHERE)1): SET 2)/3))  
20 FOR I=O TO 3: RI(I)=(INP(AD(I)AND31)-20: 
NEXT 30 IF RIC0)=-5 RESETCW(O),W(1))  
31 IF (RI)=-5 RESET 2) .3)  
40 C=O: A=RI(1): IF A>O GOSUB 2   



      69        
41 C=2: A=RI3):  IF A>O GOSUB 2        
50 GOTO 10            
110 WHERE+C)=W(0+0)+1: W(1+C)=W(1+C)+1: GOTO 202   
120 0+C)=WO+C) +1.  W1+C)=1+C)-1:  GOTO 202   
130 WO+C)=WO+C) +1:  GOTO 202        
150 WHERE+C)=WHERE+C)- 1+C)=V1+C)+1:  GOTO 202   
160 WHERE+C)=0+0)-1:  W(1+C)=W1+C)-1:  GOTO 202   
170 WO+C)=W0+0)-1-:  GOTO 202        
190 W1+€)=V1+C)+1:  GOTO 202        
200 W1+C)=W1+€)-1            
202 IFW(O+C)>127THENW(0+C)=127        
204 IF WO+C)<O THEN(O+C)=O        
206 IFW1+C)>63 THEN W1+C) =63        
208 IFW(1+C)<O  THEN1+C)=0        
210 RETURN            
1000 DATA39.0.43.0.45.127.46.63        

            10th 9 

  BASIC UP           
 

( 10.10) shows the application of the ON function if the BASIC 

extension programme 'BASIC-UP' has been loaded before.  
 

ION A G0T0 100,200,300 

ION A GOSUB 100,200,300  
 

10/10  

 
11 Machine-related programming  

 

Creating Programmes - Storage Deployment - Protection against BASIC 

CSAVE, CLOAD, and CRUN for ML Programmes  

11.1 Introduction  

Much has already been written about the use of the LASER computer as a BASIC 

computer, and it will seem almost self-evident that he understands BASIC. However, 

this can only be achieved by a combination of the hardware (i.e. the electronic 

components) and the software (the BASIC interpreter and operating system 

programmes). All commands entered in BASIC, either directly or as a programme, 

and any key input. are processed by this combination of software and hardware. So it 

seems that the device BASIC understands like a language.  

By comparison: A separate BASIC programme has been launched with RUN, and   



70  

Host no longer understands a BASIC command, only the commands provided in the 

programme. The programme:  

10 PRINT "SYNTAX ERROR": PRINT "READY": INPUT COMMANDS 20 IF COMMAND$ <> 
"BASIC" THEN GOT0 10  

demonstrates this in a stark way: After it is started, the computer accepts input, but 

reacts only to the 'command' BASIC - it turns on BASIC.  

A BASIC programme can be interrupted at any time with BREAK. This chapter 

explains how to interrupt the BASIC interpreter and then directly influence the machine.  

11.2 Construction of the computer  

The design of the LASER computer corresponds in principle to that of all current 

microcomputers. The Z80 central processor performs the command. The commands 

are taken from memory, from which can be read only (the ROM modules) and in which 

can be written (the RAM memory). The ROMs are memory modules in which the 

stored information is preserved even after the shutdown. They contain the BASIC 

interpreter and the operating system. Data and programmes can be stored in the RAM 

memory. Unlike the ROMs, this information is lost after the power is switched off.  

The Z 80 microprocessor can now execute a series of instructions, which in total 

represent the so-called machine language. In order to be incorporated into the 

machine-related programming, the description of function, application and 

programming to be found in the relevant literature should be worked out. Here you can 

only give a short overview.  

11.3 Structure and Function  

For the further representations in this chapter, the expressions Bit, Byte, and 

hexadecimal should be known. To process programmes in machine language, the Z 

80 CPU (Central Processing Unit, ZP) has a number of internal memories, so-called 

registers. The usual illustration shows (12.1).  

The sequence of a command execution can now be described as follows: The content 

of the programme counter is output as an address to the memory modules via the 

address bus (16 lines). The code located on this space is transported to the command 

register and the programme counter is increased by 1. Depending on the command 

code, values from the following locations will now be loaded, edited, linked, and   



71  
 

and new operations prepared. The programme counter is increased or changed 

accordingly. A machine command therefore consists of 1 to 4 memory words, which 

follow each other. ( A keyword = a byte = 8 bits. It can represent 256 different pieces 

of information that can be expressed by the numbers from O to 255.) As long as no 

jumps occur, the commands and data are transported to the CPU from successive 

memory locations.  

 

                  
7r- 

        
  II:  ACCUMULATOR              Second    
    8 BIT                    register set,  

  B  REGISTER  C  REGISTER      B'  c'  as the first  
    8 BIT    8 BIT             .  

  D  REGISTER  E  REGISTER      o'  E'        
    8 BIT    8 BIT                   
  H  REGISTER  L  REGISTER      H'  L'        
    8 BIT    8 BIT                   
  F  FLAG 

 
            r'          

    8 BIT                          
                            
  IX X-INDEX  REGISTER 16  BIT    R   REFRESH REGISTER    
                      8 BIT        
  IY Y-INDEX  REGISTER 16  BIT    I   INTERRUPT VECTOR    
                      DE;T&TED  

    

  SP STACKPOINTER  16  BIT                  

  PC PROGRAMME 
COUNTER  

16  BIT                  

  CR COMMAND REGISTER 8  BIT                  
                          11. 1  
                          

 
11.4 Transition from BASIC to machine language  

To load a machine programme into memory, use the POKE command under the 

control of the BASIC interpreter. The decimal numbers corresponding to the machine 

commands and their operands are written continuously into the memory with 

POKE'address, value'.  

When setting the start address, ensure that the intended storage area is protected 

from access by the BASIC interpreter (see Section 6). Then the start address of the 

programme is entered in the USER vector. This can be done through the programme 

(11.2). To this end, the statement lines in ( 11.3) should be added.   



72  

The ML programme can then be started with X = USR(X). When the ML programme is 

finished with 'RET', it returns to the BASIC programme, which continues with the next 

statement.  
 

At play: 11. 2)  

 5 ADDRESS  29184  :Start address of the ML-Prgr.  
 20 READ VALUE%  :'First value from ML Prgr. list  
 30 IF VERT?=-1 THEN END  :End of list  
 0 POKE ADDRESS, VALUE?  :Add to memory  
 50 ADDRESS = ADDRESS +1  :'Address next memory.  
 60 G0T0 20  :Continue working in loop  

70 —  
 100 DATA  .... ,  .. ,  .. ,  .., :ML-Progr. in decimal values  
 120 DATA  .... ,  .. ,  .. ,  .., :End of list with ・...,-l  
 
10 HB = AD/256  
12 LB= AD-(HBZ256) 14 
POKE 30863,HB%  
16 POKE 30862,L%  

: 'MSB DECIMAL: ・ 
CALCULATE LSB・  
:'VEKTOR MSB 
SET :'VEKTOR LSB 
SET  

11. 

3  

 
11.5 The USR vector  

In the previous programme, this vector was set for the call of a machine programme 

from a BASIC programme. Here are some more information about the USA command: 

After the BASIC interpreter is turned on and initialised, this vector is directed to the 

error output routine. A call to the ML programme will result in  

Error Message ?FUNCTION CODE ERROR IN XX.  

If this vector is now properly directed to the address of the user routine, the control can 

be passed to this programme with X = USA (X). In the simplest case, in this function, X 

is a variable whose content does not play a role in the further programme run, i.e. a 

DUMMY variable. In other cases, this function can be used to pass a parameter to the 

machine programme, which can be defined within the brackets as a constant or 

variable of any kind, including a string. The variable is passed to the BASIC register 

WRA 1 when the USA function is called. If a String variable or constant is passed, a 

pointer to the String descriptor block (length and address) can be found in WRA 1. If 

the control of the programme run with R ET is returned to BASIC as the last instruction 

of the ML programme, the content of WRA 1 is assigned to the variable in the USA 

command and can be further processed in the BASIC programme.   



73  

The following BASIC programme directs the USA vector to the 'BEEP' routine and 

puts a string over WRA 1 into AS ( 11.4).  

The addresses for WRA 1 and the related variable type flag are set out in Annexe 12.  

 
10 POKE 30862,80 : POKE 30863,52 
A$20 = USR C"TEST")  
30 PRINT AS  
RUN  
TEST  

'USR VECTOR ON BEEP  

 
11/4  

 
11.6 Why machine language?  

Basically, BASIC offers the same possibilities to write programmes as with a Z 80 

assembler. The loss of the functions of the BASIC interpreter has advantages and 

disadvantages.  

Fast execution of machine programmes is probably the main advantage. The following 

BASIC programme inverts the screen (rows 20 to 40). Row 60 places a machine 

programme in the range reserved from row 10 and starts it in row 70 -80. The screen 

previously inverse-switched by BASIC is now switched back to normal display at the 

speed of a ML programme. The difference in execution speed is more than clear.  

 

5 PRINT"BASIC START"  
 

10 REM12345678901234567890 20 FOR 1%=28672 TO 
29183  
30 A=PEEKKI%)  
40 B%=A% AND 64  
50 IF B% THEN A%=A% AND 191 
ELSE A%=A% OR 64 60 POKE 
I%,A%  
70 NEXT 1%  
80 FOR I%=31493 TO 31505 90 READ A  
100 POKE I%,A% 110 NEXT I%  
120 POKE 30862.5  
130 POKE 30863,123 140 PRINT 
"ML START" 150 A%= USR (0)  
160 END   

:'RESERVED FOR ML 
PROGRAMME :'SCREEN INVERSE 
SHIFT :'WITH BASIC SPEED 

:'ML PROGRAMME FROM DATA 
LINES : ・ READ AND ... 
:'ENTER IN REM LINE 

: 'USR VECTOR LOW 
SET :'AND HIGH BYTE SET 
: ・ M L PROGRAMME ... 
:' START 



74  

200 DATA 330,112,1,0,2,126,238,64,119 210 DAJA 
35,11,120,177,32,246,201  

11th 5  
 

This difference results from the 'pinginess' of the BASIC interpreter, who spends most 

of his time looking for bugs and making programming easier for the user; by providing 

prepared functions.  

The time advantage of ML programming is that the user is without protection against 

possible programme errors. If the machine programme nm in (11.5) is made faulty 

with POKE 31509,0 and started with A=USR(0), it can be observed what causes a 

faulty programme.  

11.7 Storage space for machine programmes  

a) Reservation in BASIC text  

As the example (11.5) shows, short ML routines within the BASIC programme can be 

loaded into space reserved by the REM command. However, the ML programme must 

not be longer than one BASIC line. If the ML programme is loaded, there will be 

difficulties in listing the programme. It should be worked very carefully during the 

editing phase and the BASIC programme should be backed up to cassette before the 

first test of the ML routine.  

b) Reservation in Video RAM  

2 KB of RAM is available for refresh memory. They are decoded in the 7000H to 

7FFFH address range. In text mode ('MODE (0)') of the video controller, only 512 

bytes are used for the screen image, the rest is available for user routines. As the 

screen RAM may be interfered with in the video due to uncontrolled access of the 

microprocessor, it is recommended to store interrupt routines and screen information.  

c) Store in the 'Free Space' area  

Appendix 11 shows that if the BASIC programme is running, there is a free space 

between the end of the variable tables and the end of the string area. Again, ML 

routines can be dropped. However, it must be ensured that the programme stored 

here cannot be overwritten by the dynamically changing BASIC stack.  

d) Storage before the BASIC text  

If the beginning of the BASIC text is moved to higher ranges, space can be created 

between the end of the system variables and the beginning of the BASIC text for 

machine programmes that are before all activities of the BASIC-   



75 

:'ANNEXE 16, THREE TIMES '0' 

:'SET BASIC START POINTER :'TO 
8001H, 32769 :'SET VARIABLE 
START POINTER :' 'TO 8003H, 
32771 

11th 6 

Interpreters are protected. A BASIC programme, which is then written and backed up 

to tape, is automatically put back in the same place when the cassette is loaded. The 

necessary transfer of the hands is done by POKE instructions directly from the 

keyboard. In the following example, the start of the BASIC text should be moved from 

the usual 7AE8H to 8000H (see also Appendix 11 and 16). In turn, the following 

instructions shall be given ( 11.6): 

(e) The safest method: At the memory end! 

The most commonly used method is to convert the 'Top Of Memory' pointer pointing to 

the last RAM cell by two POKE commands. This can also be done as the first 

statement in the BASIC programme. If CLEAR XX is then given to reserve space for 

strings, all TOM-dependent pointers in the operating system are automatically reset. 

The statement: 

10 POKE 30898, PEEKC30898)-2: CLEAR 1000 

reserves 2256 bytes for ML programmes, rewrites the pointers of the string area and 

the BASIC stack pointer, and reserves 1000 bytes for string storage. It is important 

that CLEAR is given with parameters, otherwise the pointer correction will not be 

performed. If necessary, CLEAR 50 or CLEAR 1. 

11.8 Saving the M L programmes on cassette 

To save a user-developed ML routine to cassette, enter the programme ( 11.8). As 

previously discussed, for this routine (as for the user programme), RAM space should 

be reserved and the loader should be started with the USR vector set and the call with 

X=USR(X). 

11.9 Users Interrupt Vector 

An interrupt pointer under the address 787DH in RAM allows to include user-written 

routines in the system interrupt. The only interrupt source is the video display 

generator, which every 20 msek an inter- 

 
 

 
 
 
  

POK 32768.0 <CR>  
POK

 
-32767.0 <CR>  

POK
 
-32766.0 <CR>  

POK
 
30884.1 <CR>  

POK
 
30885,128 <CR> 

POK
 
30969.3 <CR>  

POK 30970,128 <CR> 



 
DI  
LD C, F1 H  
LD HL, (78A4H) 
PUSH HL  
LD HL, (78F9H) 
PU SH HL  
LD HL,XXXXXXH  
LD (78A4H),HL 
LD HL,YYYH  
LD (789FH, HL 
LD HL, ZZZZ 
CALL 34ACH)  
POP HL  
LD (78F9H),HL 
POP HL  
LD (78A4H) 
EI  
RET  

Z77ZZ DEFM ' "NAME" 
' DEFB OOH  

 
LD HL,7AE9H  
LD (78A4H),HL 
JP 36CFH  

76  
 

;DISABLE INTERRUPT  
; BINAR PROGRAMME 
NUMBER ;RESCUE BASIC START 
POINTER  

RESCUE BASIC-END-POINTER  

STARTADR HERE. 
SETTING ;POINTER ON START BIN 
FILE ;END HERE. SET  
;END BIN FILE POINTER  
;ADR. PROGR NAME  
; AND SAVE ;MAKE BASIC-END 
POINTER  

;CREATE BASIC START-POINTER ;ALLOW 

INTERRUPT  
;RETURN TO BASIC  

;PROGR. NAME MAX. 15 
CHARACTERS ;FINAL NAME  

11th 8  

 

STARTADR. 
BASIC ;RESTORE  
;AND JUMP AFTER BASIC START ;HERE 
START THE USER ROUTINE  

11th 9  

 
ruptly for the Z 80 processor on the INT connector. MODE1 of the masked interrupt is 

used. Since the pulse triggering the interrupt is the vertical synchronous pulse of the 

video controller, access to the video RAM should only be made during the sync 

blanking gap in the interrupt programme. Otherwise, there is no need to avoid 

interferences in the image. If the CPU receives an interrupt pulse and is allowed to 

execute, then it will. the run continued at 0038H. ( 11.10) shows the interrupt service 

routine in ROM 1 of the LASER computers:  

In 787DH, the code of the RET command is entered after the computer is turned on. 

Now a JP command can be implemented from a user routine to a separate interrupt 

routine.  

The user interrupt routine can also be completed with RET to achieve a continuation of 

the ROM routine.   



      77    
0038  JP 2EB8      

2EB8  PUSH AF  ;INTERRUPT SERVICE  ROUTINE  

  PUSH BC  RESCUE REGISTER    
  PUSH EN      
  PUSH HL      
  CALL 787DH  ;USER INTERRUPT    
  CALL SCREEN  ;BUILD SCREEN  
  CALL CURSOR  ; LET CURSOR FLASH  
  CALL KEYBRD  ;CHECK KEYBOARD    
  CALL BUZZER  ;BEEP IF KEY GEDR.  
  POP  HL  RESTORE THE REGISTER  
  POP  EN      
  POP  BC      
  POP  AF      
  EI        
  RETI   ; STOP INTERRUPT    
      11/10 

 
ORG 787DH 

INTRAM DEFS 3  
START  EQU 7AE9  

 
ORG START 
DI  
LD SP,7FFFH 
LD A,CH  
LD (I NTRAM) , 
A LD HL, 
USRINT  
LD INTRAM+) ,HL EI  

 
USRINT  CALL KEYBRD 

  POP  HL  

  POP  HL  
  POP  EN  
  POP  BC  
  POP  AF  
  EI    
  RETI   

; USER INT RAM 
JUMP ;RESERVE THREE BYTES  
; START USER ROUTINE  

 
; DISABLE INTERRUPT  
; REINITIALISE STACK ;0BJ 
CODE OF THE JP INSTRUCTION  
;IN THE RAM JUMP VECTOR ;START. 
INTERR.ROUTINE ;IN JUMP 
STATEMENT ;INTERRUPT ON  
;CONTINUE WITH THE  
; ... FRONT PROGRAMME  

; CHECK KEYBOARD  
; USER INT PROGRAMME  

DRIVE. FROM STACK ;CREATE 
REGISTER  
; TO END THE INT ROUTINE  

 
;INT TURN ON  
 

11. 11   



78  

12 For the assembler programmer  
 

Keyboard query, CRUN/CLOAD, character to screen, string - output, 

compare symbol, next character test, compare DE/HL, test variable 

type, control codes,  
Joysticks, Buzzer BEEP, Printer Control  

This chapter presents a small collection of useful assembler 

routines for creating machine code.  

Keyboard Query  

The keyboard query routine starts at 2EF4H. The keyboard is 

queried and the key code is placed in register A. The registers AF, 

BC, DE and H L are amended. The example (12.1) waits for the 

button RETURN to be pressed.  

 
 

SCAN  
 

CALL 2EF4H 
OR A  
JR Z,SCAN 
CP r/JDH  
JR NZ, SCAN. 
RET  

; KEYBOARD 
QUERY ;KEY 
PRESSED? ;NOT 
PRESSED ;TEST CR  
;NO CR  
;BACK Z. CALLING PROG. 12/11  

 
CRUN and CLOAD  

The routine CRUN is called at 372EH, CLOAD at 3656H.' H L is 

used as a pointer to the programme name. The name is placed in a 

buffer. The quotation marks are part of the name. The string ends 

with a '0' byte. Both routines use the system RAM of the LASE R-

OS.tems. User programmes should not use this area.  

 
NAME  DEFM "TARGET" 

DEFB 0  

 
LD HL,NAME 
J P 372EH  

;NAME OF PROG TO LOAD. ;CLOSURE  

 
;DISPLAY PROGR.NAME IN HL ; 
RUN CRUN  

12/2   



 
GAME  

 
DEFB 0  

79  
 

; CLOAD WITHOUT 
PROGR.NAME  

 
LD HL GAME 
JP 3656H  

;POINT TO NAME ; 
RUN CLOAD   

12/3  
 

Character to screen  

The character output routine is invoked at Q33AH. The character 

defined by the ASCII code in A is output to the location of the 

screen specified by the cursor pointer. Registers will not be 

changed.  

 
LD A,'A' 
CALL 033AH 
LD A, ODH 
CALL 033AH  

;CODE 'A' IN REGISTER 
A ;ISSUE CHARACTERS  
; ISSUE CARRIAGE RETURN  

12/4  

 
string output  

Start address is 28A7H. The HL tab points to the string. It 

completes with an 'O' byte. All registers are used.  

 

 
MSG  

LD HL,MSG 
CALL 28A7H  

 
DEFM 'READY' 
DEFB ODH  
DEFB 0  

;HL IS POINTER ON STRING ; 
ISSUE STRING  

 
; STRING  
; CARRIAGE 
RETURN ;TERMINATO
R  

12/5  

 
RST 08H ・ Compare Icon  

A string that the pointer in HL points to is compared to the 

character codes after the RST 08H calls. If the match is found, H L 

is incremented, the control is passed to the following RST 08H 

statement and the next character is checked. If no match is 

detected, an error message (SYNTAX ERROR) is reported and the 

programme branches to re-enter.   



80  

 

;COMPARES CHARACTER CHAIN, WHICH HL SHOWS ;WITH 
CHAIN 'A=B=C'  
 

 

RST O8H 
DEFB 41H 
RST O8H 
DEFB 3DH 
RST O8H 
DEFB 42H 
RST O8H 
DEFB 3DH 
RST O8H 
DEFB 43H  

;TEST WHETHER 'A'  
; HEXCODE FOR 
A ;A FOUND  
;NOW TEST, WHETHER 
'=' ;OK, NOW TEST,  
;0 'B'  
;OK, TEST  
OB '='  
;OK, TEST  
;OK, STRING IS A=B=C  

 
12/6  

 
Test next" icon  

A will be loaded with the next character, which the register pair H L 

points to. The carry flag is set if it is an alphanumeric character. 

Blanks and the OBH and 09H control codes are ignored and the 

next character is loaded and tested. String to be tested must be 

completed with 'O'. H L points to the initial address of the string 

minus 1 and is incremented with 1 before loading a character.  

 

;A CHARACTER CHAIN IDENTIFIED BY HL IS CHECKED WHETHER IT IS 
PART OF A VARIABLE ALLOCATION, WHETHER THE ・-・ ; A CONSTANT 
OR VARIABLE NAME FOLLOWS.  
 

 
NEXT  

 
VAR  

RST O8H 
DEFB 3DH  

JR NC, VAR 
CALL 1E5AH 
JR SKIP  
CP 2BH  
JR Z, NEXT 
CP 3DH  
JR Z, NEXT 
CALL 26ODH  

;TEST, WHETHER '=', YES?: THE 
FOLLOWING  
ADDRESS CHARACTERS  

;ON '=' FOLLOWING CHARACTER 
IN ;NC IF VARIABLE NAME  
; GET VALUE OF 
CONSTANT ;NEXT JOB  
NOT NUMERI SCH +, -, ALPHA? ;+, 
NEXT CHARACTER  
;TEST OB -  
;-, NEXT CHARACTER  
;OK, ALPHA CHARACTERS, SEARCH 
FOR ;VARIABLE NAMES NOW  

12th 

7   



 
CARRY SET 
NO CARRY 
NZ  
or  

81  

RST 18 - Compare DE to HL  

DE and HL are numerically compared. DE is subtracted from H 

L. Signed integer numbers can only be processed in positive 

range. Only the A-register is used. The result of the comparison 

will be placed in the Status register:  

 

- HL < DE  
- HL > EN  
- UNEQUAL  
- EQUAL  

 
IN A STRING (HL SHOWS AT THE BEGINNING), THE FOLLOWING VALUE 
IS TESTED AFTER ;'=' WHETHER IT IS IN THE RANGE 100-500 ;S.  
 

RST 08H 
DEFB 3DH  

JR NZ,ERR 
CALL 1E5AH 
LD HL,5OO 
RST 18H  
JR C, ERR  
LD H L, 1 
00 RST 18H  
JR NZ, ERR  

TEST TO '='  
, -  
;'=' FOUND, NEXT CHARACTER ; IF NOT 
NUMERIC  
; HOLE BINAERERERT  
;UPPER LIMIT VALUE  
;COMPARISON WITH BINERT  
; CARRY, IF VALUE >500  
;LOWER LIMIT TEST  
;COMPARISON  
;NO CARRY, MISTAKE!  
 

12/8  

 
RST 20H ・ Test Variables Type  

The routine returns with a combination of numeric values in the 

A register and status flags. It is orientated to the 'Data Mode 

Flag' (78AFH) and thus determines the number type in the WRA 

1 arithmetic register. The usage should be controlled, because 

some subprogrammes called can change the type flag and so 

the value in WRA 1 and the flag no longer match.   



 
TYP
E  

 
STATUS  

 
A-REG  

82  
 

—  02  INTEGER  NZ/C/M/E  -1  
03  STRING  Z/C/PIE  0  
04  SNG.PREC  NZ/C/P/O  1  
08  DBL.PREC  NZ/NC/P/E  5  

 
;AFTER AN INTEGER ADDITION, THE DATA TYPE ;IS TESTED 
TO DETERMINE THE TYPE AT OVERFLOW  

 

  LD A,2  ;TYPCODE INTEGER    
  LD 78AFH) ,A  ;IN FLAG REGISTER    
  LD BC, (VAL1  ; FIRST VALUE    
  LD HL, (VAL2)  ; SECOND VALUE    
  CALL 0B2DH  ;DO INTEGER ADDITION    
  RST 20H  ;OVERFLOW TEST    
  JP M, OK  ;INTEGER RESULT    
        ;NOT INTEGER    
        ;TEST OTHER TYPES    
OK  LD (SUM),HL  ; RETURN INTEGER RESULT  

VAL 1  DEFW 125  ;16 BIT INTEGER    
VAL2  DEFW 4235  ;16 BIT INTEGER    
SUM  DEFW 0  ;HERE'S THE RESULT  TOWARDS 

        12/9 
 

Display Control Codes  

All cursor functions can be executed in machine programmes.  
 

CURSOR  LEFT  08H 
CURSOR  ADD.  1BH 
CURSOR  DEX.  0AH 
CURSOR  RIGHT  09H 
RUBOUT    7FH 
INSERT    15H 
CURSOR HOME  1CH 
CLEAR SCREEN  1FH 

 
LD A,1CH 
CALL 033AH 
LD A,1FH 
CALL 033AH  

;CURSOR 
HOME ;DO  
;CLEAR SCREEN; 
D0  

12/10   



 

 

 
LD HL,259 
LD BC,75 
CALL 345CH  

 
CALL 3450H  

; FREQUENZ 
CODE; TON 
DAUER  
;CALL TONROUTINE 12. 12  

; CREATE 'BEEP'  

12/13   

8

3 Programming joysticks 

In programmes with machine code the joysticks can be read even more easily than 

under BASIC. The following example reads the joystick matrix and returns the joystick 

status as a result in tabs B and C. B contains the status of the right joystick, C the 

status of the left joystick. (See also Chapter 6: Programming the joysticks.) 

FIRE A FIRE B LINKS 

JOYSTK IN A,(2EH) OR OEOH 
CPL 
LD B, A 
IN A, (2DH) 
BIT 4,A 
JR NZ, 
JOYST1 SET 
5.B 

JOYST1  IN A,2BH 0R OEOH CPL 
LD C,A 
IN A,(27H 
BIT 4,A 
RET NZ 
SET 5.c 
RET 

;4. READ SERIES 

RIGHT JOYSTICK STATUS IN B ;3. 
READ SERIES 

;LINKER JOYSTICK STATUS IN C 

12th 

11 

0 EW. 1 2 

RIGHT DOWN. ;1. 

READ SERIES 

;2. SERIES 

3 4 BIT 5 

buzzer 

Under the address 345CH is the routine that controls the piezo speaker. Before calling, 

the H L register shall be loaded with a number corresponding to the desired pitch and 

the SC register with the code of the duration (Duration). All registers are used by the 

routine. 



84  

The audio frequency encoding is inversely proportional to the audio frequency. Small 

numbers represent high frequencies and large numbers deep. For example, the 'small 

C' is encoded with the decimal number 526, the 'C' with the number 259, and the 'high 

C' with 127. The following routine (10.12) produces a sound 'C' with a sound time of 

75 vibrations.  

beep routine  

The routine used by the operating system, which produces the characteristic 'beep' at 

every key stroke, starts from address 3450H. All but the HLR register contents are 

destroyed. In order to produce such a sound, the call is simply given according to 

( 12.13).  

 

printer control  

To output a character to the printer, load the character code into the C-Register and 

call the printer driver routine in 058DH. After the call, the ASCI I code of the character 

is included in the A and C registers for further processing, the contents of all other 

registers are destroyed. The letter 'a' (ASCI 1 97 decimal) is issued as follows (12.14):  

 
LD C,97 
CALL 058H  

;LOAD CODE IN C-REG  
; CALL PRINTER DRIVERS 

12.14  

 
If a CARRIAGE RETURN control code is sent to the printer via the driver, a 

LINEFEED code is automatically sent. If the driver is called '0' with C-Register, the 

driver routine checks the printer status and returns the result. Set or delete bit 0 of the 

A-register. In addition, the BREAK key is tested and the CarryF I ag is pressed.  

Printer Status  

A routine that checks the printer status starts at 05C4H. When called, it loads the 

status (1/O port 00H) into the A-register and returns. Bit 0 is '1' when the printer 

detects the 'BUSY' signal, ・and '0' when the printer is ready for reception. No other 

tabs will be changed.  

 
TEST  CALL 05C4H 

BIT 0,A  
JR NZ,TEST  

;TEST PRINTER 
READY ;TEST BIT 0  
:TYPES WHEN BUSY  

 

12th 
15   



85 

CR/LF to Printer  

A routine starting from 3AE2H can be called to output the CR/LF combination to the printer. 

There is no need to set a register in advance. The contents of all registers will be changed. 

If the BREAK key is pressed while the print process is in progress or while the READY 

status is in progress, the routine returns with the carry flag set.  

 
CALL 3ÄH 
JP C, BRK  

 
Attachm
ents  

; SENDS CR/LF TO PRINTER ;TO BRK, IF 
KEY PRINTED ;NEXT IF NOT  

12/16  

 

A table of contents for the attachments is located at the start of the book.   



~ 
'——.--..:~ 8 
 ' 

 ・:  
・ ed - 

5 

t. .
= 

O + 
'-<f— ~ 8 

'-+—~ al 
(lC)"1 

> 

 
 
 
 
 
  

               " ・
,i.- ,・v  

 
                              ..  i;  H 711  

  
                              , .

 
€  (Al)’  

  
                              

・ G・ 

 " s,  
  

                            
~lHOI S  l1l  ..    

                              
IQ ~  il  l,(J  

  
                              ,a t  u as  

  
     

C,  
       za a  H IQ        

a:  
         ±     

N  
       e 6  II /.<l  

g 
  ......    

C3  
      

SV Oi  S1  fil1  
  

D 0  
         d, w  
 

u.J  
      w.  ,i 

,     
0:  

  1~    ~ 
  <l:  

  
D %    2  e        98 Zu  th ・v  

                
%  E  ~        

'irll  to ,v  C, 

               .w.,  6l 
lY  ~ 

                  
ex 

              
ONO 5(,  G(ON!)  

~ 
             

D 

                 ... 
or  ~ t                           <Cl         

c'..      2.      ~ i 
h  p

u ~ 13'    ~

-
Oh yes! 

      
          ~ ~ 9: CO 

      
               ""     
                              8 

        
    ~                                  
  .                  
    ;                                   

  9                                    

 
!! 

                  



 
z 

0
  

 

    :±   
<'l       
 "   
 

0 

   ..     p     
    3    
  

o  
     o    

    \1 

・   
~   >  

   o  
3 8  

  
  ec    D  

r , r , r 1 r 1 r 1 r 1 r 1 r 1 LJL j 
l JL J L J LJ LJ  

~  ..l  !c  -: t ~ 1 i;  

 

  .    0 

  9  !

 ~  ...    '"    
0  

  '    ''     ''    
,     
~    
§     

  
N  

  ~

 

C[  V 

0    
',    
>  l  
c.  
g  a
0  Q L or ,_:J:  :::  
u  

Q 
,UJ  0

1-  ..
0  t

 0

UJ  '
-
 

0  

>     



 

 
1  

               
  

1  
      

e 
  ±                    

  
1  

      j   i    
1  

            
  1  

              1  "            
1  

                
1  i        C  

  
1  

                1  ~        t    
1  

                
1  

        >    
1           1      

(,!l  
         lj     0   1              

...J  -' 

            0  ;f 
1  

                
1  

        or     1             l  
:I: 

          
1  

   O   1  
                

1  
        

uI 
    

1                  1                
1  

                1  
              1  

                1  
      

0  
      

            
0  

   
                

1  
      

1  
      

                1 
                

                1 
                

                1 
      .s          

                
1 

                
        

1 

        
              c 

1 
    

±  
        

              
1 
    "  

        
                t----              
              

1 
                L  

            1 
                  

    -      
1 

                  
            - _J 

                  

 
>->  
±z  
#4 
±  



0
   



  



 

 

 

 

 

0  
  '..j  
    >-  
  0  
  0  
  ...J  
 ~ 0  
 or  l  :,  

u  l  : w  
....  ・   0  

  w  
  0  
  >    

8%]   ~ ; 

 
a >  

 

 

 

 
 

  



 

 

 

 

 

 

 

 

 

 
t  

 

 

 

 

  



 
      e%                           

aük    
u u  -.._> 

  
<j  rl1  :l:  ''  0  0  

- " ....  
'-"  ''   u  t 2 

    :z  is    <  <  <  <  <  <  0  000  a  0 

n:  $$9  (n)  
;!  u,  ''  ,- 00  ''  -<> r-  ;;  8  or  

'; Q,~~~  $  3 
e'(  

''  ''  
or th  v n  or  

 

0     ~        
>        Cl     0     ...1.  

   0  0:  
    

or  w    ::I:  >—  
  (.)  ::  0  

 Cl.  or  
 w  :::;  
 1-  0  

~   u  ~  0  >—  
  w  (U)  
  0  0  2  

 5  u  0  
  

8%,  
:;,  0  

 0  8   _J  
  

  
~N  

± 
~  

ii,,O:  
~        

 

 

 

 
l
  

 

             
ee 

     
"' 0  

    c;                        ! 
34l  

 
u  

 z ? 
‘l ....  

g 
-<>  

or 
oO  0- ~  

3 Eg     or +    <C <  <C  <C  <C <C    
a' ''    - d  0  c,- 00 ,-  ''  lJ1  -+ <')  <']  -:  or  r -:  r:  ""'  '':  0  

  
'' or  .....  

  
 

0 r1   



‘Ha 
a r m", o. 
t "z """t"" 

r-
Q 
1 
<S> 

Q 

 
 
 
 
 
 
 
 
 
  

  u    
H 

 
    ...   
    <   
    E 

  
    w 

  
  ::c  
  u      CJl   
    E   
    <   
    he:   
    E 

  
  <  

    he: 
  

    c.: 
  

  0  
  he:  
    Q. 

  
    ..J 

  
    <   
      o  
  a:  
   

a

 
      ..     o 
      

H

  
      :..

  
      O  
    lo 

   ,... 
      N 

        e:  
    ''     

(/) 

    
<C 

        ..J 

(Cl)  
        

,...      .....      CJl  r-1  
   ..J  ::  
   t  

        r—       
'-"  

  



0 
Cl r-

Cl 

 
 
 
 
 
 
 
  

                                

? 
    g 

                  
v 

                  a: 

                  w 

                  '' 
  c.l 

                      OJ  
        1:3 

 
1D 

    
r-l  

     
,,  

  '   
‘0 

 
0 

    
,,  

     
E—<  

  ><   
C 

 a:     
E—<  

     
,,  

  
Ul 

  
:, 

 E-<     
<i.  

     
Cl  

  
:: 
  e 

 
Ul 

    
Cl  

      , ++   1D                     a: 

              
0.  

  

± 
 w 

              
0o  

   ''    
i: ... 

          
r-l  

   1:3 
      

0. 
                    1-t>         

   
<Sl 

             2 
      

r-l 

                            
      1-i>                    1-{>         
                            l—P         
                                        
                            HL>             
                            H 

> 
            

                                        
                            ^>             
                            }>         u  

  
                                    .....  

  
                   E-<   
                            r-t>         <    
          ...                        E  

  
     

r-,  
            

c.l  
      ....              :c   

          
Ul  

                        u  
  

    -"'  ..J  
            

Ul  
   >  r-;  "?  

              
  ''  

r-,  
                +  

T  
                

    
( 

                                    
                   

a2  
 

                                      u  
  

                   <                      
Ta..  

 
                                      a:  

  
                   

c.l  
 

          (>                          E-<  
  

                   ;z   
                                      

H  
  

                                      a:    
                                      

c.l  
  00  :—                  E-<   ...                   ;z   ....                                      

H  
  Ul  

                                    a:  
  ..J  

                  C.   ‘3  
                   r-,  
                    

                            >  -"'  
          

              
Lu  r-;       

                            +  
...            

                                    ...      
>  

                                  ....      
''                   

Ul  
  +                   

..J  
                    ~                                        r-,      

                            >  -"'            
                            ''  r—;            
              +  

...      



z 
0 

> z w 
0 0: ;: .. 

a: 
8 
UJ 

0 

w 
15

N 
r- 
~
a: 

,5 iii 
i 

1! 1 1~ 
ti"' 

:, 
(U)

z 
u: 

 
 
 
 
 
 
 
  

 - - - - —r  1  
''  :,  ''  1  ~

Qc  
0:  

...  1  "- ":  
1  

      

              C             and 
  

              b            0   
            

J  
>             8   

      C,      
:, 

 
      g      

(U) 

   ... <!. :;-      
I> 

1  "          
c: 

  '' f;’ 
  
1 

t     0      ''     

..      o  1-    ""'    '' ' 
  X     

I<°\

  
                :::  0 

  
<) 

    
              u   v  or 

  ''     
c-1      UJ  Cl:  l'.J 

 
t,(\

  
          1- 

  ~  ~         
        

0 

    
==           0 (c)  x  1-      
       w 0  V  or    
        C 

w 

                   N -  0 

      
        > '  /-  -           

w 

         <r-   N V,  
 

0

             
0

        ...  # II @
 

..:: ...   
u
         0      

w 

       h  
1  

...  
      

.  w  
 

u+ 

 < 
       ...   Si  

u 

         
1-  

   
(U) 

         ;:       -      ""           
      

a  
  ,f—411                  

      
w  

1 ~--        
      .   or               

0  
      

1
    1

     1

  1

 ... 1  
  1  
  

 
1  

 
  

1  
  

  
1  

  
  1  a;  

          
1! "  

1 

 o  ± or     or 

          
!
 

:

                  
or 

 $ ; J 8     
0 

           ~  
:

      5 
                        8

  .  i!i or 
  /:  

    
           

or 
   : 

" %    u 
           !  

5 

 ~
 
  

::; 

           
or 

 
or 

   ~   ..            
0 8  

0 ! lp u 

   
0.. 

           
;: 

 
;: 

 
g

o    ~   < 
           

►

  
u 
  ±                ;   1 '' t   

1-

           e ±    
: ili E  ►  

  
(U) 

              ?  1
or  

 'o a: 

           f   i  
±  1-► u: 

           
! 

  §
 

  
2  )<V, UJZ  

                 5  0  UJV, 

go             ±  
r 

 9  3 

 
0  u  Z< 

              "       

#l$% #%z!  
                    

r                                
        d!  4   c:t      e

  
     .
 
  $    , p        

            
. 
!    d  ~      J   

'

   ...  :  E,        :t  
..   ''   ,.   ..   ''  

h  
      ''                                   ..  ..   ..                  ..                           ""  tj  
 

D (U)  
                

...  
       



 
o
r  
ß
  

 

a: 
w  
?  

 

7.  

i  

wh
er
e 
Vl <l 
<lW 
cn: 
w  

 

  Cl        
    ~             
         15 

    t;              
  0      

g  

 

  
.J  

     
I 

  0       ~        ''     or      8   

  J:       
n  

   u   
:,  

  ''     w    ~~  !E    
    1-  

   -   "     
    0 

   ~~ l      
  w   $.      
    Cl  

 ‘s  or  
    

  >  
・ ?  

     
<l a: 

 
D  

  
  8"] 

OÜ 
  

D 

      <l  
  8    2 
          

  ~   
; c  

~  $          ascend 
  

N  ~                
::  

         
.. 

< 

               
:, "         3                
  in                
   

< 

±         "         ~ ffi:a      



 
~  

1
 
1
  

°  
1  
1 1  

1  

 

 

 
LASER PAL COLOUR 

BOARD 80 - PAL  

INSTALLATION GUIDE  

Synchronisation  
P-1, P-2  
alternately set to green inner field and colourless border  
PR-1 to adjust to minimum margin disturbances.  
L-1 to~ adjust minimum disturbances in the image.   



Annexe 9: Variable formats 

10 POKE 30978,8 : REM VARIABLE BIN DBL PREC 20 
DIM A, AA, BB, Z1$, AA (3,33) 
$30.21 = "TEST" 
40 AD= PEEK (30970) * PEEK (30969) 45 
REM POINTER ON VARIABLE TABLE 50 FOR 
I = 0 TO 80 
60 PRINT PEEK AD + I; NEXT I 

AZ INTEGER 2 0 65 0 VALU
E 

VARIA-nY 3 
NAME (ASCII) t 

  POINTER ON TEXT 

STRING STRING LENGTH 

CONSEQUENCES VARIABLES AD, I 

1 FIELD 
AA 3.3.3) 

NUMBER OF BYTES T 

NUMBER DIMENSION 
1 

ELEM! 

1. 

ELEM! 2. 
DIMENSION 

ELEM! 

3. 

 VALUE  ............ 64 X 4 BYTES (TOTAL FIELD LENGTH=260  
BYTES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
  

SINGLE              
PRECISION  4  65.65 0  0  0  0 

AA              

DOUBLE                      
PRECISION  8  66.66 0  0  0  0  0  0  0  0  

BB                      

STR ING          
$21  3  49.90 4  22,123 

        %  
    

1  

L



Cartridge Entry 
Points 

vz 200 
LASER 110 

LASER 210 

LASER 310 

RAM Extensions 

4000H 

6000H 

8000H 8000H 

9000H

C0OOH 
D0OOH 

FFFFF

FH 

>16KB 
RAMEransmissio

n 
f. LASER 110 
and VZ 200 

{6KB RAMEransmission 
f. LASER 210 

46KB RAM expansion f. 
LASER 210 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

  Annexe 10    
  memory mapping    

0OOOH       
  ROME 1    
2000H        
  ROM2    
4000H L    
  free    
6800H  IN/OUT    
7000H  RAM (TV)  2K  

7800H  RAM  2K  
8000H        
  RAM  4K  
9000H        

  RAM  8K  

COOO
H        

rrrr[  free  1 
  

  (a)    



Annexe 11 

BASIC System Variable 

7800H 

7AE7 

7AE8 

(31464) 

BASIC System Variable 
78A4H 
78A5H 

From Power Up Routine 

Initialised HP 
BASIC text 

Pointer values apply to the LASER 110 with 16 KB memory expansion. The 

arrows mark a dynamic border 
The string area is defined with CLEAR 1000 
HP  =Text Head Pointer  STP = BASIC Stack Pointer  
TP  = Text Tail Pointer  
FPA = Field Pointer Top FSL = 

Free Space List 

STSP = String Space TOM 

= Top of Memory 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

    78F9H  
      

    78FAH      TP  
  Variables          
    78FBH    Dynamic pointers,    
    78FCH  

  FPA  
  field variable      depending on the 

BASIC    
    78FDH    Programme    
    78FEH      FSL  
  - Free          
  -$  

78E8H  
      

  78E9H  
  stack pointer  STP  

        (FOR-NEXT, GOSUB)  
  BASIC stack          
    78A0H  17H  With CLEAR Statement  

    78A1H  BCH  discontinued  STS
 

  String Range %          
last  -         
RAM.  - busy  78B1H  FFH  With Memory Test    
cell  

  78B2H  BFH  established  TOM 



Annexe 12: system variable 

780C 30732 not used until ...・・7815 
3741 
7816 30742 ADDRESS OF KEYBOARD SCAN ROUTINE 7818 

39744 not used until ...・ 
781C 30748 
7820 3752 POINTS ON CURSOR ADDRESS 
783B 3.0779 COPIE DES OUTPUT-LATCH CONTENTS 787D 

3845 INTERRUPT EXIT ADDRESS 
<CAN BE DIRECTED TO YOUR OWN INTERR.ROUTINE 

788E 30862 

78903 30864 

7893 39867 

7896 38870 

7999 30873 

789A 3087 4 

789B 30875 

789C 3876 

789D 3 0877 

789E 30878 

789F 39979 

7840 30880 

78A2 30882 

7844 30884 

78A6 30886 

78A7 30887 

78A9 30889 

784 3089 

78AB 30891 

78AC 30892 

78AE 30894 

784F 329895 

USR JUMP VECTOR 

COINCIDENTAL NUMBERS 

GENERATOR 'IN', ADDRESS, 

VALUE 'OUT', ADDRESS, 

VALUE 
LAST SIGN AFTER 'BREAK'. FLAG: ENTRY 

TO RESUME ROUTINE 
DATE CHARACTERS IN CURRENT PRINT LINE OUTPUT 

CHANNEL: !=PRINTER, 0=VIDEO, -!=CASSETTE FORMAT OF 

DISPLAY ROW 
PRINT LINE FORMAT 
reserved 
STRING AREA DISPLAY CURRENT 

LINE NUMBER ADDRESS BASIC 

START 
CURSOR COLUMN POSITION 

ADDRESS KEYBOARD BUFFER 
FLAG: 0=CASSETTE INPUT, OTHERWISE <>0 

RANDOM NUMBER GENERATOR 
VALUE OF REFRESH REGISTER LAST 

RANDOM <2BYTES) 
FLAG: 0=SEARCH VARIABLE, !=NEW VAR. ENTER TYPE FLAG 

FOR VARIABLE IN ACCU WRA1 
2=INTEGER 3=STRING 4・SNG.PREC 8=DBL.PREC INTERIM WHILE 
EDITING AN EXPRESSION ADDRESS HciCHSTE RAM CELL <MEM 
SIZE> 
POINTER ON NEXT OPEN SPACE IN LSPT 
LSPT <LITERAL STRING POOL TABLE> 
END LSPT 

LENGTH & ADDRESS OF A STRING TRANSPORTED TO THE STRING 

AREA 
78D6 30934 POINTS TO NEXT AVAILABLE SPACE IN THE STRING AREA 
78D8 30936 POINTS TO LAST BYTE OF CURRENT INSTRUCTION/ ED IT FLAG 

DURING PRINT USING 

78DA 30938 

78DC 30940 

78DD 30941 

78EN 3.0942 

78DF 30943 

78E1 30945 

78E2 30946 

78E4 30948 

ROW NO. OF THE LAST READ DATA STATEMENT 'FOR' FLAG: 
59 FOR-LOOP KT. =NOT ACTIVE 
FLAG INPUT: =KEYBOARD OTHERWISE READ 
READ FLAG: =RAED-ANW. ACTIVE l=INPUT-ANW. ACTIVE ON 
USING: SEPARATOR BETWEEN STRING L VARIABLE 
PROGR.START-ADR. LOADING TO DOS AUTO FLAG: NO CAR 
<2CAR 
CURRENT LINE NO. IF INPUT 
reserved 

 
 
 
 
 
 
 
  

78B.0 3,0896 
78B1  3,0897 
78B3  3,0899 
78B5  391 

78D2  3093 

78D3  3,0931 



79E6 395 AT INPUT: CURRENT ROW ADDRESS: ROW NO. THE CURRENT 
ROW  

 
78E8 3952 

78E 3954  

78EC 30956 

78F0 
350960 
78F2 3962 
78F3 30963 
78F5 30965 
78F7 30967 
78F9 3 
0969 78FB 
3971 78FD 
30973 7BFF 
30975  

7901.30977  

 
791B 31003 

791C 31004 

791D 31005 

791E 3106 

791F 31097 

7920 31008 

7921 31 09 

7922 31010 

7923 31011 

7924 31012 

7925 31013 

7926 

31,014 

7927 

31,015 7 

92D 31,021  

792E 

31,022 

792F 31023 

7930 31024 

7949 3149 

794A 

31,050  

POINTER FR BASIC-STACK  
LINE WHERE LAST ERROR OCCURRED <ERL>  

ADDRESS OF THE COMMAND WHERE ERROR OCCURRED 
AT THE BEGINNING. DER ON ERRORROUTINE  
ERROR FLAG: ERROR SETS 255, RESUME SETS ADR. 
DECIMAL POINT IN BUFFER  
LAST ACT. ROW NO., END, STOP SAVED. LAST BYTE 
WORKED ON ERROR  
POINTER END BASIC/ BEGIN VARIABLE  
POINTER END VARIABLE/BEGIN FIELD VARIABLE 
POINTS (END FIELD>IBEGINN FREE SPACE  
POINTS TO CHARACTERS AFTER LAST 

CHARACTER READ  
DEFAULT TABLE VARIABLE TYPE NAMES 26 BYTES 
(A-Z>  
DOES A VARIABLE NAME NOT CONTAIN A TYPE CODE  
HE WILL BE FROM THE TAB. TAKEN. NEW BEARS 04 A 
CHANGE BY BASIC-UP DEFINT,DEFSNG,DEFDBL TRACE 
FLAG: 175=TRACE ON =TRACE OFF  
CARRY FOR PUSH OPERATIONS  
X-REGISTER* WRA1 * LSB DBL. PREC  
WRA1 DBL,PREC VALUE  
WRA1 DBL.PREC VALUE  
WRA1 DBL.PREC VALUE  
WRA1 LSB INTEGER/ SNG.PREC 

WRA1  
WRAl MSB SINGLE PREC 
WRA1 EXPONENT SNG.PREC  
SIGN OF THE YIELD, AT MATH. ~ ARITHM. OPERAT 
INTERMEDIATE. DBL.PREC ADDITION  
Y・REGISTER # WRA2 % LSB  
RA2 MSB  
 

WRA2 EXPONENT  
 

not used  
 

INTERNAL PRINT BUFFER 
LAST BYTE PRINT BUFFER  
DBL.PREC DIVISION <DIVISOR>  

 

— OWN ENTRIES—   



Annexe 13: Advanced ASCII Code, Screen Code  

 

POKE  ASCH] cHAR POKE  ASC1I I CHAR POKE  ASH/cHAR  POKE ASCH] CHAR      
32  32  SPACE  33  33  1  34  34  "  35  35  #      
36  36  $  37  37  %  38  38  8  39  39  

        
4Cf  40  (  41  41  )  42  42  

. 
43  43  +  

    
44  44  

.  
45  45  -  46  46  

  47  47  I      
48  48  II  49  49  1  59  50  2  51  51  3  

    
52  52  4  53  53  5  54  54  6  55  55  7  

    
56  56  8  57  57  9  58  58  :  59  59  ;  

    
6@  6@  <  61  61  

- 
62  62  >  63  63  7  

    
9  64  @  1  65  A  2  66  B  3  67  C      
4  68  D  5  69  E  6  70  F  7  71  G      
8  72  H  9  73  1  70  74  J  11  75  K  

    
12  76  L  13  77  M  14  78  N  15  79  0  

    
16  8@  p  17  81  Q  18  B2  R  19  83  s      
20  84  T  21  85  u  22  86  V  23  87  w      
24  88  X  25  89  y  26  99  or  27  91  1      
28  92  \  29  93  1  30  94  

..  
31  95  e  

    
32  96  SPACE  33  97  1  34  98  "  35  99  #      
36  1GII $  37  1@91 %  38  102  &  39  103 ,.      
411  1g4  (  41  105  )  42  1f)6 

. 
43  107 +  

    
44  1118 

.  
45  1119 -  46  119  

  47  111 I      
48  112  II  49  113  1  511  114  2  51  115 3  

    
52  116  4  52  117  5  54  118  6  55  119 7  

    
56  128  8  57  1'21 9  58  122  :  59  123 ;  

    
6@  124  

<  
67  125  

- 
62  126  >  63  127 RUBOUT  

  
12B  128  □  129 129  Gl  139  130  G  131 131 l  L110  L210  
132  132  3  133 133  [1]  134  134  purl!  135 135 l      136  136  

g  
137 137  R  138  138  I]  139 139 lively h'grey  green  

1411 14g  141 141  !II  142  142  ~  143 143 ■  144  144  
□  

145 145  [yyy  146  146  liiJ  147 147 iiiil      148  148  3  149 149  [1]  1511 1511 9  151 151 

— 
white  yellow  

152  152  e]  153 153  g  154  154  I]  155 155 lively      
156  156  e  157 157  lt  168  168  I!  151 159 ■      
16GI  1611 

□  
161 161  [yyy  162  162  liiJ  163 163 iiiil      164  164  3  165 165  [1]  166  166  9  167 167 a  d'grey  blue  

168  168  ]  169 169  
1  

1711 170  
%  

171 171 lively      172  172  ~  173 173  174  174  176 175 
■      

176  176  
□  

177 177  [yyy  178  178  E  179 179 iiiil      
18@  180  3  181 181  [1]  182  182  9  183 183 g  d'grey  red  
184  184  

3  
185 185  g  186  186  I]  187 187 lively      

188  188  189 189  !II  1911 1911 E  191 191 ■      
64  192  fi!I  66  193  A  66  194  Be  67  196 ~      
68  196  lcil  69  197  E  711  198  [E]  71  199 G      
72  200  181  73  201  (I)  74  202  0  75  203 6      
76  204  [IJ  77  295  f.il  76  206  l!ijl  79  207 (Q)      
8  2118 E  81  2119 G  82  210  [Bl  83  211 [S]  

    
84  212  III  85  213  O  86  214  IV!  87  216 Wed      
88  216  

%  
89  217  IYI  911  218  

%  
91  219 [D      

92  220  92  221  a  94  222  96  223 B3      
96  224  

□  
97  225  [I]  9B  226  E  99  227 purple      

199  228  III  1g1 229  6  1112 230  8g  103 231 8      
1@4  232  [D  1@5 233  0  1g6  234  G  197 235 [±1      
1118  236  GJ  1@9  237  B  11%  238  

□  
111 239 IZl      

112  240  II]  113 241  [)  114  242  a  116 243 @      
116  244  a  117 246  6)  118  246  6  119 247 7      
118  248  8  121 249  9  122  250  (TI  123 261 III      
124  252  g  126 263  EI  126  264  S  127 266 D       



CONTROL CODE TABLE  
 

ASCII  FUNCTION  ASCII  FUNCTION  ASCII  FUNCTION  ASCII FUNCTION  

Cf  CR/LF  1    2      3    
4    5    6      7    
8  CURSOR  

9  CURSOR  
14'  CURSOR  

11    
LEFT  RIGHT  DEX.  LF  

  
12    13  CR/LF  14      15    
16    17    18      19    
20    21  INSERT  22      23    
24  CURSOR  

25  CURSOR  
26      27  CURSOR  

LEFT  RIGHT  
    ADD.  

28  CURSOR  
29  CR  3      31  CLEAR  

HOME  
    SCREEN  

 

 127  RUBOUT  

 

TABLE OF CHARACTERS PRESENTED WITH POKE ONLY  
 

POKE  CHAR POKE  CHAR POKE  CHAR POKE  CHAR 

192  □  
193  L  194  '-J  195  (iiil  

196  ~  197  [I  198  5  199  ~  
200  E  201  !!iil  202  I]  203  E  
204  ~  205  ~  206  ~  207  ■  208  u  

209  C.  210  iJ  211  (iiil  
212  ~  213  [I  214  5  215  l  
216  !!]  217  ~  218  I]  219  

._ 220  ~  221  ~  222  I  223  ■  224  D  225  [iil  226  .:J  227  (iiil  
228  D  229  [I  230  3  231  a  232  ]  233  5  234  I]  235  E  
236  ~  237  ~  238  ~  239  ■  240  □  

241  [iil  242  .:J  243  

.. 
244  ~  245  [I  246  5  247  u  248  !!]  249  g  250  IJ  251  E  
252  ~  253  ~  254  ~  255  ■   



Annexe 14: Geometric Functions  
 

Function  BASIC formulation  

SECANT  SEC(X)= 1/COS(X)  
COSECANT  CSC(X)= 1 /SIN(X)  
COTANGENT  COT(X)= 1 /T AN(X)  
INVERSE SINE  ARCSIN(X)=ATN(X/SQR(-X・X+I))  
INVERSE COSINE  ARCCOS(X)=-ATN (X/SQR(-X・X+l))+pi/2  
INVERSE SECANT  ARCSEC(X)=ATN(X/SQR(X+X-1))  
INVERSE COSECANT  ARCCSC(X=ATNX/SQR(X+X-1))  

  +(SGN(X)-1)+pi/2  
INVERSE COTANGENT  ARCOT(X)=ATN(X)+pi/2  
HYPERBOLIC SINE  SINE(X)=(EXP(X)-EXP(-X))/2  
HYPERBOLIC COSINE  COSH(X)=(EXP(X)+EXP(X))/2  
HYPERBOLIC TANGENT  T ANH(X)=EXP(-X)/EXPX)+EXP(-X))" 2+1  
HYPERBOLIC SECANT  SECH(X)=2/(EXP(X)+ EXP(-X)  
HYPERBOLIC COSECANT  CSCH(X)=2/(EXP(X)-EXP(-X))  
HYPERBOLIC COTAN GENT  CQTH(X)=EXP(-X)/(EXP(X)—EXP(-X)+2+1  
INVERSE HYPERBOLIC SINE  ARCSINH(X)=LOG(X+SQR(X+X+1)  
INVERSE HYPERBOLIC COSINE  ARCCOSH(X)=LOG(X+SQR(X+X-1)  
INVERSE HYPERBOLIC TANGENT  ARCT ANH(X)=LOG(J +X)/(l-X))/2  
INVERSE HYPERBOLIC SECANT  ARCSECHXJ=LOG((SQR(-X+X+1)+1/X)  
INVERSE HYPERBOLIC COSECANT  ARCCSCH(X)=LOG((SGNX)+SQR(X+X+1)/X  
INVERSE HYPERBOLIC COT ANGENT  ARCCOTH(X)=LOG(X+ 1)/(X-1))/2  

 

Annexe 15: Shorthands INSTRUCTION 

CHARACTERS DESCRIPTION  

 
PRINT  

 

REM 

LET  

 

THEN  

 
GOTO  

 

?  

 
=
  

CAN BE USED IN BASIC TEXT, BUT IS 
LISTED AS 'PRINT'  

REPLACES REM  

INSTEAD OF LET A=5, A=5 CAN BE 
WRITTEN  

MAY BE REPLACED OR REPLACED BY COMMA, 
E.G.  

IF A=0 GOSUB 1000  
IF A<>B PRINT "XXXX" 

BUT:  
IF A>5 , 200  

MAY BE ELIMINATED WHEN THERE IS AN 
IMMENSE SEPARATION OF THE VARIABLES 
AND CONSTANTS TO BE ISSUED, E.G. 
PRINT A$ B$ "SEMIKOLON"  
BUT: PRINT A; B  

CAN BE ELIMINATED BY THEN, E.G. 
IF A>S THEN 200   



Annexe 16: BASIC text format 10 A = 12  

20 PRINT A  

FOR I=O TO 18:?PEEK(31464+I);:NEXT <RETURN>  

 
30884.  

[233[122] 

314641 1  

1 0 11242! 122~ 101  

 
HP 78A4H  
 

Start ・ ・  
 in the row Pointer to  Line No.  A  Token 1  2  

the next binary  
 

1  
122*256+242=31474  

314731  

[ o [so!a[ zsl  

 

ol 1181 651  

 
  ‘y  Token A  
31480 ‘l J,  PR1~0969 ▼  

[[e[s["4 ]3]iq re zur"   

oj szr ‘s] o] 



Annexe 17: BASIC Tokens  

 
128 

131 

134 

137 

14,0 

143 

146 

149 

152 

155 

158 

161 

164 

167 

170 

173 

176 

179 

182 

1 85 

188 

191 

194 

197 

200 

203 

206 

209 

212 

215 

218 

221 

224 

227 

23 

243 

247 

6,2

49,

252  

END  
SET  
%  
INPUT  
LET  
IF  
RETURN 
ELSE 
VERIFY 
<DEFDBL>  
SOUND <ERROR> 
<ON>  

*  
*  
*  
*  
*  
CONT  
<DELETE>  
CLOAD  
TAB  
USING  
<ERL>  

*  
MEM>  
NOT  . - .  

  %  ?  
 

・>  
 

SGN 
FRE> 
SQR 
EXP 
TAN  

*  
LEN  
ASC  

 

129 

132 

135 

138 

141 

144 

147 

15 

153 

156 

159 

1 

62 

165 

168 

171 

174 

177 

18 

18 

3 

186 

189 

192 

195 

198 

21 

204 

27 

21g 

213 

216 

219 

222  
 

244

.24

7  

 

FOR  
CLS  
NEXT  
DIM  
GOTO 
RESTORE 
REM  
COPY 
<DEFINT> 
CRUN 
<RESUME>  

*  
*  
*  
* <SYSTEM>  
POKE  
LIST 
<AUTO> 
CSAVE  
TO 
<VARPTR> 
<ERR> 
POINT 
INKE Y$s 
STEP  
・3°  
AND  
 

INT 
INP 
RND  

 

STR$
 
CHR$  

 

130 

133 

136 

139 

142 

145 

148 

151 

154 

157 

16 

163 

166 

169 

172 

175 

178 

181 

1 4 

187 

193 

193 

196 

199 

202 

2g5 

28 

21

1 

214 

217 

220 

223 

226 

229 

242 

245 

244 

8.2

51.

255  

 

RESET  

*  
DATA  
READ  
RUN 
GOSUB 
STOP 
COLOUR 
<DEFSGN> 
FASHION  
OUT  

*  
*  
*  
*  
LPRINT  
PRINT 
LLIST 
CLEAR  
NEW  

*  
USR  

*  
%  
THEN  

 

14° 

'y°  
OR  
, <  

 

ABS  
%  
LOG 
SIN 
PEEK  

*  
VAL  
LEFT4

 %  
%  
 

*  UNDOUBLED CODE  
(XX> TOKEN IS RECOGNISED BY THE 'BASIC UP' EXTENSION.   

RIGHT$  $259 MID  
* — 

225 cos 
228 ATN 



Annexe 18: Tape Loading Format      

  T: Text File  B: Binary File  D: Data File  

SYNC. bytes  255 bytes of 80H  255 bytes of 80H  255 bytes of 80H  

HEADER  5 bytes of FEH  5 bytes of FEH  5 bytes of FEH  

EXTENSION  1 byte of F0H  1 byte of F1 H  1 byte of F2H  

FILENAME  16 bytes (max.)  16 bytes (max.)  16 bytes (max.)  

  of ASCI 1  of ASCII  of ASCII  

CAP  3 ms Blank  3 ms Blank  3 ms Blank  

START ADDRESS  2 bytes of binary  2 bytes of binary    
END ADDRESS  2 bytes of binary  2 bytes of binary    
Programme Content  xx bytes  xx bytes    
Data Content      xx bytes  

checksum  2 bytes  2 bytes  2 bytes  

End of File  20 bytes of Zeroes  20 bytes of Zeroes    
Marker (EO F)  (00H)      
Terminator      1 byte of 00H   



Annexe 19  

Comparison of LASER-BASIC to various BASIC dialects Notes 

on rewriting published programmes  

1. LASER-BASIC supplement with "EXTENDED BASIC":  

ON A GOSUB 100,200,...  DEFINE  

ON A GOTO 100,200,...  DEFSNG  
FRE (0)  DEFDBL  
FR E("")  DEFSTR  
ON ERROR GOTO  RECT  

 
VARPTR 

POS (X) 

RANDOM  
 

ERL  
ERR 

RESUME 

LPEN  

2. Sound 

Commands 

Statement  

500 BEEP  

500 CLICK  

 

3. FOR ... NEXT loops FOR 

l=0 TO V  

 

CIRCLE 

PAINT  
MEMSIZE = H IMEM 

PLOT ... TO...  

 

LASER-BASIC 

500 SOUND 12, 1  

500 POKE 30862,80: POKE 30863,52 

501 X=USR(0)  

 

will pass once when V=0 is used. In other BASIC 

versions, the statements between FOR — NEXT 

will not be executed.  
 

4. Variable names  

Names longer than two characters are allowed in LASER-BASIC. However, only the 

first two characters will be counted. For example, Tl99/4A uses 16 

characters; in the SINCLAIR-BASIC, even arbitrary long names are used.  
 

10 VALUE=5 20 WORLD=12  

30 PRINT VALUE; WEL T  

A programme run results in 5 and 12 on the mentioned computers.  

However, the LASER-BASIC issues 12 and 12, since the variable WE has been 

addressed twice. An adjustment of the variable names should be made if necessary.  
 

5. Printer Control 

The Statements  
 
200 OPEN 4,4,0  
400 PRINT#4,'TEXT"" 

490 CLOSE4   

Exampl
e: 



are against  
Replace 400 LPRINT "TEXT", delete 

the OPEN and GLOSE statements.  

6. Random numbers with RND (X)  

In some BASIC versions, RND (X) produces random numbers in the range of Obis 1. 

Subsequent instructions convert these numbers to the desired range. All these 

instructions must be omitted, in LASER-BASIC argument X is the upper limit of the 

random number to be generated.  

A=RND (49) 

generates a number in the range 049.  

 

7. String processing 

BASIC DIALECTS 

(SEG$A$,1,4)  
A$(TO 4)  
A$ (4 TO) 
SEG$A$.6.5)  
A$(6 TO 10)  
A$7)  

 

LASER BASIC 
LEFT$A$.1,) 
LEFT$(A$A) 
RIGHTSA$,) ! 
MID$(A$, 6, 5) 
MID$A$,6,5) 
MID$(A$,7,1  
 

8. Retain characters from keyboard  
 

 

GET 10 A$  
10 CALL KEY  

9th PRINT statements 100 

PRINTI;SPCI;I2  

 
100 PRINT " 
100 PRING "  

100 INVERS  

 
100
.11
0.1
20  

100
.10
0  

100
.10
0  

 
PRINT I;  
FOR J=O TO I:PRINT" ";:NEXTI 
PRINT 12  

CLS ;DELETE SCREEN PRINT 
CHR$28) ; CURSOR HOME  

POKE  :REM INVERS ON  
POKE  :REM INVERS OFF   

AS=INKEYS:AS=LEFT$(A$,1) 
DITO 



10 Screen Area  

In most cases, a redesign of the screen layout is necessary, depending on the 

format of the image in rows and columns. The targeted output  
on the PRINT AT X,Y screen; shall be assigned to:  

Z=32X+Y 
PRINT@Z,  

 

where X and Y is the screen coordinates and Z is the direct number of the screen 

location. It should be noted that some BASIC interpreters refer to the first screen 

position with O corresponding to X=O and Y=O, while others use 1 each.  

The relative cursor control commands on VC and CBM computers are available 

on the LASER only with line-length PRINTCHRS(xx);CHRS(xx) ... statements. A 

new screen would make more sense.  

11th Accuracy of figures  

See Chapter 1: Double precision variables.   



The LASER computer system  

 

LASER 110 Monochrome Video and HF Output Basic Devices  
4 KB RAM, 2.5 KB for user programmes.  

LASER BASIC V 2.0  

LASER 210 Colour Computer, 8 KB RAM, 5.5 KB for user programmes. 

LASER BASIC V 2.0  

LASER 310 Colour Computer with 18 KB RAM, Typewriter Keyboard, BASIC V 

2.0  

 
 

Access
ories  

16 KB RAM modules for all basic devices  

64KB RAM module with BANK switch (4 banks 

16KB)  

Printer interface with Centronics interface  

Joysticks  Control stick for video games, programmable 

by BASIC  

Lightpen  For sophisticated menu technology  

and Graphics Applications  

Floppy Disk  To connect two 5.25" drives  

Controller  

floppy drive  Drive, 90KB capacity, for 5.25" disks, double 

density  
 

 

PP4O  

 
Software  

four-colour printer/plotter,  
40 characters/line. Paper: roll  

More than 50 programmes on cassette, including 

flashbox, Z-80 assembler, game collection  

 
Sales and proof of purchase, software list of  
SANYO VIDEO VERTRIEB, long series 29, 2 Hamburg 1  

 

USER-PORT-Module for 24 IN/OUT lines, 

interfacebaustein 8255  

Analogue digital converter, User-port 

operation Digital analogue converter, User-

port operation  

 
 

Sales:  1. Bockstaller, Hadwigstr. 16 7867 

Wehr 2, tel.: 07761 - 18 08   



 

ji;  

sl] sd  

Software System, Manual 1  


